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16. Abstract (Continued)

for the intermediate risk factors using accident data collected in the State
of Indiana.

• The conjectured Causal Network was restructured by examination of which
network variables were determined by the models to influence maximally a

risk factor.
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risk factors was established quantitatively and it was shown how this infor-
mation could be used to evaluate highway safety program outputs that might
influence such variables.

• The influence of driver age was found to vary from small to considerable in
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FOREWORD

This final report documents the materials, methods, results, con-
clusions and recommendations of the project entitled "Highway
Safety Programs Effectiveness Model" sponsored by the Department
of Transportation, National Highway Traffic Safety Administration,
under Contract No. DOT-HS-6-01496. The research was conducted
during the period September 1976 through February 1977.

Dr. Anthony N. Mucciardi was the Project Manager for Adaptronics,
Inc. The authors thank the NHTSA Contract Technical Managers,
Messrs. Dennis Pastorelle and George Booth, for their advice,
encouragement, and guidance throughout this project.
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1. INTRODUCTION AND SUMMARY

1.1 PROJECT BACKGROUND

In onrly 1973, a systematic approach to assessing the developments

and achievements of the U. S. highway safety programs was begun.

Three successive phases of inquiry were established:

• Phase I studied how NHTSA state and community grants were
spent by the states, in terms of equipment and services,
and the catalytic effects of these funds produced from
FY 1968 through FY 1973.

• Phase II yielded a broader examination of highway safety
activities nationwide. This study measured national pro-
gram outputs of highway safety efforts at all governmental
levels from 1969 through 1974, using indicators of performance
such as ratios and percentages.

• Phase III started with the findings of the earlier studies,
and attempted to determine the effects of safety programs
on the level of traffic accidents, injuries, and fatalities.

Preparation began for Phase III in the fall of 1975 with NHTSA

literature searches to explore methodologies and techniques for

approaching a detailed evaluation of national effectiveness. The

ultimate objective of Phase III was to determine quantitatively the

effects of highway safety programs on the occurrence of accidents,

injuries, and fatalities.

A number of necessary components were recognized as being essential

groundwork toward achieving the Phase III objective. These consisted

of:

• Identifying those factors which related to the occurrence
of accidents, injuries, and fatalities, and defining the
framework in which they operated;

• Determining how these factors interrelated in influencing
the occurrence of accidents, injuries, and fatalities; and
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• Determining the structure in which the outputs of the
highway safety programs impacted the occurrence of
accidents, injuries, and fatalities through the alteration
and control of these intervening factors.

Two efforts were initiated to examine and partially develop

these components.

The first of these efforts was designed to approach all of the

above components in an exploratory fashion -— the result being the

construction of a Causal Network which ultimately displayed the

factors believed to influence the occurrence of an accident and

their postulated interdependencies in leading to an accident. Also

depicted in the network were the outputs of the highway safety

activities as they were believed to interact with the intervening

factors. Such a network provided the means of relating program

outputs to crash reduction, since safety efforts were intended to

impact the factors associated with an accident and thereby reduce

the occurrences of accidents. The expected benefit of a highway

safety countermeasure program was estimated through knowledge of the

functional relationship between the outputs of the proposed activity

and the associated factors, and in turn the influence of those factors

on crashes.

The development of the methodology and technology required to estab-

lish these functional relationships constituted the second of the

two initial efforts and is the subject of this project and report.

This effort was intended to model mathematically the structure

developed in a Causal Network and to test that structure against

nationally representative data. The technique explored in this

initial modeling task is known as an Adaptive Learning technique.

This approach to modeling is based on the premise that if a relation-

ship exists between one or more independent variables and one

dependent variable, that relationship must be encoded in any data
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collected on these variables. This premise is employed by

Adaptive Learning in the sense that a given data base is analysed

to determine if any functional relationships display themselves

in the data. If such functional relations are found, those

variables also correspond in the real world. Conversely, if no

functional relations are found, it is concluded from the above

premise that the variables are not predictably related in the

real world.

These procedures have been completely automated by Adaptronics

and were used in this study to explore the potential of the Adaptive

Learning technique for modeling highway safety relationships. This

approach was applied to the factors set forth in a Causal Network

constructed especially for this project. The relationships between

the program outputs, the intervening factors, and the occurrence of

accidents displayed in the network were tested along with various

other variable combinations utilizing nationally representative

data. In essence, the postulated network was checked and appro-

priately altered so as to trace quantitatively the effects of the

outputs of highway safety programs in deterring accidents through

the control of the intervening factors. This deterrent effect was

estimated by asympotically reducing the outputs of the highway

safety programs to zero and observing the impact of these reduc-

tions on the intervening factors, and in turn, the effect of these

alternations in the intervening factors on accident occurrences.

1.2 PROJECT STATEMENT AND OBJECTIVES

The purpose of this project, "Highway Safety Programs Effective-

ness Model," was to construct a core model to identify and repre-

sent mathematically those interactions outlined in a conceptual

Causal Network.
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The specific project objectives were:

• Review for methodological validity, rigor, and feasi-
bility, NHTSA's proposed evaluation approach of creating
a mathematical model of the accident-occurrence structure.

• Apply Adaptronics analysis techniques and supporting
software to the highway safety program impact assessment
model design.

• Conceptualize and construct a mathematical model capable
of functionally relating highway safety program outputs
to the intermediate risk factors and then to accidents,
injuries, and fatalities.

1.3 MODELING METHODOLOGY OVERVIEW

To understand the modeling technique employed and its application

to highway safety, it is helpful to detail better that portion

of the Causal Network which supports the modeling effort. A

hypothetical Causal Network is displayed in Figure 1.1. (The

network of the figure does not show the outputs of the highway

safety programs or the "bottom line" of occurrences of accidents,

injuries, and fatalities.) This network is depicted in a form

believed to be conducive to realization of the model and not

necessarily representative of the actual form of the Causal Network

currently being researched and constructed. However, this hypo-

thetical Causal Network will suffice for describing the model.

The network of the figure flows to the right, i.e., a line from

factor A to factor B (B to the right of A) is interpreted as

representing a suspected influence of factor A on factor B.

1-4
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All such factors (the A's) that flow into a single given factor (B)

are suspected of either individually or jointly influencing the

given B-factor.

As an example, select as the B-factor "driver impairment"

(Figure 1.1). The A-factors are those believed to influence driver

impairment as shown in the network by a line leading to this B-

factor; namely, day-date-time, driver sex, driver age, driver

occupation, urban vs. rural environment, and miles driven during

the last 12 months. These six A-factors are called the independent

variables for the dependent variable "driver impairment."

A model (i.e., an equation) could now be constructed to represent

the relationship between the independent variables (A-factors) and

the dependent variable (B-factor). This was accomplished as

follows:

• The six independent variables were used as inputs for
modeling driver impairment and their structure and
coefficients were learned from recorded data for these
variables, without reliance on assumptions by the analyst
about mathematical structure. The input parameters that
were most informative for the modeling purpose (i.e.,
predicting driver impairment) were automatically selected.
The technique used to perform this task is called an
Adaptive Learning Network (ALN) technique.

• The input variables did not need to be individually
correlated with the modeled (dependent) variable "driver
impairment." Often, nonlinear combinations of the inputs
were correlated with the dependent variable, and when this
occurred, these nonlinear combinations were fou-nd by the
ALN method. Also, the input variables did not need to be
statistically independent; various factors could be used
as inputs even if they showed strong cross correlations.

• As the model (equation) of the relationship between "driver
impairment" (the dependent variable) and the six factors
(independent variables) evolved during synthesis, it
became as rich in interactions between the input variables,
in their nonlinearities, and in their multinomial structure
as required for optimal fitting of the data.
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• The model could possess as many degrees of freedom
as necessary (even more than the number of data points
used for its generation), but data overfitting was avoided.
Note: the proof that overfitting had been controlled was
to demonstrate on an independent evaluation set of data
that the model accuracy rate was the same as that obtained
on the data for which the model was synthesized; this
proof was obtained routinely using known algorithms.
The model was also realizable in extreme situations
involving very large or very small amounts of data.

• Once the model was obtained, its use to obtain predictions
required little computing effort.

This modeling approach was employed for each selected dependent

variable (B-factor) displayed in the network (Figure 1.1). The

combined use of these dependent-variable models comprised the

overall model, and as such could be used to determine program

impact as outlined in Section 1.1. Notice that the model identified

the key risk factors (driver impairment, following too closely, etc.)

r.s well as determined their quantitative importance. This knowledge

could be used to decide which highway safety programs were needed to

lessen the undesirable effects of these risk factprs.

1.4 MAJOR RESULTS

The major objectives of this project have been accomplished.

Specifically:

• Nonlinear, multivariate models possessing good accuracy
have been synthesized for the intermediate risk factors
(Figure 1.1) using accident data collected in the State
of Indiana.

• The conjectured causal network (Figure 1.1) was restruc-
tured by examination of which network variables were
determined by the models to influence maximally a given
risk factor.

• The effect of a particular exogenous variable -- driver
age — on intermediate risk factors was established
quantitatively and it was shown how this information could
be used to evaluate highway safety program outputs that
might influence such variables.

• The influence of driver age was found to vary from small to
considerable in predicting several highway risk factors.
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1.5 CONCLUSIONS AND RECOMMENDATIONS

It is concluded that the causal network approach of presenting the

complex functional relationships between accident, risk factors, and

endogenous and exogenous variables is mathematically sound and

has utility in assessing highway safety program impact. Computer

simulations performed by Adaptronics demonstrated that the

adaptive learning network modeling methodology can be used effec-

tively in quantitative modeling of causal networks.

One of the main difficulties encountered in this project was in

coping with the definition and encoding procedures of the Indiana

accident data base. As an example, the techniques for assessing

"light conditions" and "road conditions" via visual examination

created a considerable variation among different observers. It

is recognized that these data were recorded under sometimes diffi-

cult circumstances and, occasionally, not even on the same day as

the accident. However, it would definitely be of benefit to

obtain objective measurements whenever possible. For instance, a

light meter could be used to record light conditions if measured

reasonably soon after the accident and a hand-held profilometer

could be employed to measure the road surface condition.

It is additionally recommended that future data bases be1 collected

with a better balance between the number of cases wherein a risk

factor is cited and not-cited as accident-causative.

Finally, non-accident data should be collected. Even though

there exist methods of synthesizing a pattern classifier when

only accident-involved data are available, it is easier and more

meaningful to design a classifier to discriminate between the

accident-involved and non-accident populations when both data

sets are available.
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2. USE OF CAUSAL NETWORKS IN ASSESSING
HIGHWAY SAFETY PROGRAM EFFECTIVENESS

2 . 1 BACKGROUND

The National Highway Traffic Safety Administration has been con-

ducting the Highway Safety Program Impact Assessment to determine

the impact of highway safety programs on the occurrence of traffic

accidents, injuries, and fatalities. In the development of this

assessment, a conceptual complex Causal Network approach is to be

constructed. A contract for the "Construction of a Comprehensive

Causal Network" is currently being supported by DOT/NHTSA, and

the Center for the Environment & Man, Inc. is the contractor [10.1.

Their Causal Network will allow functional statements of the pro-

gram output, risk factor, and accident occurrence environment to be

made and it will provide the interactive capability of using actual

accident data for an efficient and effective analysis.

2.2 CONCEPT OF CAUSAL NETWORKS

In the conceptual development of the assessment of highway safety

program effectiveness, there is recognition that program per-

formance levels are not capable of being related directly to

accident levels in terms of avoiding or retarding growth trends.

A complex network of intervening variables is at work and programs

are being directed toward their alteration and control. These

intervening variables are commonly referred to as "risk factors"

or "factor variables". Figure 2.1 is a graphical representation

of a conceptual Causal Network. It can be seen that highway safety

program outputs P-, P2» ••-, Pk give rise to "activities" (e.g.,

a program decision to lower speed limits may produce more visible

police cars on the roads, advertising campaigns, etc.). These,
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in turn, relate to the risk factors (e.g., "speed" is a risk

factor that may lead to accident involvement). Certain risk

factors are interrelated and lead ultimately to accidents. Thus,

the link from a DOT-sponsored program output to effects on accidents

is an indirect one.

As described above, in the relationships shown by a Causal Network

one might find a particular risk factor affected by a multitude of

program activities, with each activity making its individual

impact at various levels given varying circumstances. Likewise, a

single program output might affect more than one risk factor,

again varying its impact given different conditions. To understand,

diagram, and measure those complex relationships and hence to be

in a position to make definite findings regarding program effective-

ness, these conceptual Causal Networks provide guidance regarding

the appropriate mathematical models to use.

A typical Causal Network, modeling part of the conceptual causal

network, was constructed by the first Contract Technical Manager,

Mr. D. Pastorelle, and others and it is given in Figure 2.2. For

example, Risk Factor 14 (light conditions) is influenced by

Variables 1 (day, date, time) and 2 (weather). Similarly, Risk

Factor 21 (posted speed) is influenced by Variables 8 (urban/rural),

9 (highway type), and 10 (road separation). These are conjectured

functional relationships between two highway risk factors and some

of the exogenous variables (day, date, time, driver age, driver

occupation, etc.).

2.3 USE OF CAUSAL NETWORKS

The main use of a conceptual Causal Network is to aid in assess-

ment of highway safety program effectiveness. The end result is

not the construction of a given type of comprehensive Causal
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Network, but rather use and simulation of the Causal Network to

evaluate highway safety program effectiveness. Hence, any

description of Causal Networks should state clearly the guidelines

and procedures regarding how it is to be used to assess highway

safety program effectiveness.

To use fully any Causal Network as a guide for modeling purposes,

accident involvement levels (the last layer) have to be defined.

One approach is to use damage costs as indications of the levels

of accident involvement. Another possibility is to define the

levels of accident involvement as the seriousness or severity of

the accident by some evaluation criterion.

Due to the short duration of this project and the lack of an

accident level definition in the data base used in this project,

the last layer in the Causal Network — accident involvement level --

was left as further work. The Adaptronics ALN models were synthesized

for all the other layers of the Causal Network (Figure 2.2).
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3. HIGHWAY ACCIDENT DATA BASE

3.1 INTRODUCTION

To show the utility of the ALN Modeling technique in this applica-

tion, a highway accident data base was required. The highway

accident data base was supplied by NHTSA. It consisted of a sub-

set of the accident data collected under the "Tri-Level Study of

the Causes of Traffic Accidents" by the Institute for Research in

Public Safety at Indiana University [8]. A detailed description

of this highway accident data base, denoted ITADB (Ridiana Tri-

Level Accident Data Base), is presented in Appendix A.

3.2 CHARACTERISTICS OF THE HIGHWAY ACCIDENT DATA BASE

A total of 98 variables of the ITADB was recorded for each of 720

accidents (i.e., observations). (A description of these 98 variables

is given in Table A-i in Appendix A,) Only 29 of the 98 variables

appear in the Causal Network of Figure 2.2. However, it was found

that often more than one of the 98 ITADB variables fell within

the definition of a given variable in the 29-variable Causal

Network, so some of the ITADB variables were combined. The relation-

ship between the 29 variables used in the Causal Network and the

98 ITADB variables is presented in Table A-2 of Appendix A.

Variables 7 (Wt/Hp ratio), 10 (road separation), 17 (number of

occupants), and 20 (traffic controls) of the Causal Network were

not recorded in the ITADB.

The 98 ITADB variables were divided into the following five types

of variable:

Type 1 - Informational Variables
Traffic Units, Day of Week, etc.

3-1



Type 2 - Environmental Variables
Weather Condition, Condition of Road Surface, etc.

Type 3 - Exogenous Variables
Age, Sex, Marital Status, etc.

Type 4 - Numerical Variables
Speed Limit, Frequency of Driving a Particular Road, etc.

Type 5 - Risk Factor Variables
Recognition Error, Inattention, Position of Car on Road, etc.

3.3 LIMITATIONS OF THE DATA BASE

After Examination of the ITADB, a number of problems was revealed:

• There were missing or unknown variables in some of the
records (observations) - In some of the records, values
were missing. These values were assigned in the following
way. The frequency distribution for the variable under
question was determined using that subset of the 720
observations for which values were available. The
frequency distribution was then used to bias the genera-
tion of a (uniformly distributed) random number. This
value was substituted for the missing value. A different
random number, so generated, was used to substitute for
each missing value of the given variable in the data set.

• Some variables had unbalanced distributions - Unbalanced
distributions of a number of the ITADB variables were
troublesome. For example, ITADB Variable P36 — "cross-
flowing traffic" — was cited as a causative accident
factor only 9 times out of the 720 accidents. Usually
more than one of the ITADB "P" variables composed one
of the "x" variables, so the value assigned to the x
variable was determined as follows. If any of the P
variables was cited as accident-causative, the corresponding
x variable was also. For example, x-~ was defined as
Driver Impairment. The three P variables that relate to
x^a were Impairment Due to Alcohol, Impairment Due to
Drugs, and Impairment Due to Fatigue. The values of 1
and 2 were used to denote "not cited (N/C)" and "cited
(C)", respectively. So, if alcohol, drugs, or fatigue
singly, or in any combination, were cited as a causative
factor (i.e., assigned the value 2), then x 1 6 was coded
as a 2 also; otherwise, it received the value 1 if the
three P variables were all not cited.
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Although this procedure meant that the x variables were
better distributed between the N/C and C values than
were the P variables, there were still some x variables
that had mainly N/C values. So, if these variables
were among the set that would serve as candidate inputs
for a model of another variable, an attempt was made to
find the largest subset of the 720 observations for
which all of the input variables and the output variable
would simultaneously have the most balanced distribution.

• The method of coding the value of some variables was
not very appropriate for quantitative modeling purposes -
The third problem with the ITADB was the manner in
which the variables were coded. How does one numerically
code the day of the week, the hour of the day, the
weather conditions, etc.? This is a commonly recurring
problem in a number of fields including highway safety.
The approach used in this project was to assign numerical
values in the most rational manner possible so that all
the variables could be treated as taking on discrete
values for modeling purposes. The procedures used
are described in Appendix C. As an example, those
variables that were either N/C or C as accident-causative
were assigned binary variables, 1 (N/C) or 2(C). The
hour and day variables were each split into two trigono-
metric variables as follows:

Hour — sin (27rh/24) and cos (2Trh/24)

Day — sin (2ird/7) and cos (2Trd/7)

Thus, numerical discontinuities that would otherwise
appear between the 24th and Oth hour and the 7th and
1st day were avoided.

In summary, it is emphasized that the ITADB was not designed

originally with the purposes of this project in mind. Instead, it

was the only data base available that could easily and quickly be

transferred from one computer file to another and that, also, rea-

sonably satisfied the needs of this project. Consequently, certain

steps had to be taken in the use of the data base for modeling

purposes that could raise questions of appropriateness, validity,

etc. Adaptronics is sympathetic to these concerns and had debated

them internally and with NHTSA personnel. The decision was made

3-3



to proceed with use of the ITADB because the purpose of this

project was to demonstrate the feasibility of mathematically

modeling and analyzing Causal Networks. In this spirit, and

because of the small time (4 months) and funds allotted to this

project, it to believed that this was a sound decision. Further

work will certainly need to be performed with data bases that are

more closely matched to the needs of model syntheses. The results

of this project can give considerable guidance for such future

efforts.
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4. CONSTRUCTION OF HIGHWAY SAFETY PROGRAM.
EFFECTIVENESS MODEL VIA ADAPTIVE LEARNING TECHNIQUES

4.1 ADAPTIVE LEARNING NETWORK (ALN) MODEL

In principle, models that predict risk factors can be either derived

analytically or empirically.

An analytical model is one obtained by "reasoning from first prin-

ciples." That is, the investigator attempts to interrelate all

pertinent physical laws thought to influence injury. The problem

with the analytical approach to modeling is that many physical

processes are so very complex as to defy reasoning from first

principles. Constructing a mathematical model necessarily requires

a number of approximations about the relationship of one variable

to another. If the guesses are wrong, the model proves to be

inaccurate. Furthermore, the model may become quite cumbersome due

to a large number of coupled equations, so that the computer process-

ing time increases to unacceptable amounts.

Empirical predictive methods involve finding a predictive equation

that best fits the observed experimental data. But, with con-

ventional empirical modeling methods, one still has to know which

interrelationships are important in order to write the general terms

of the equation. And the resultant models, like analytical ones,

are inflexible. If unanticipated changes occur in the process,

the models become obsolete.

A different approach introduced by Adaptronics incorporates "self-

learning" principles. To construct a self-learning model, the

analyst first decides what variables may be important, but it is not

necessary to consider the effects of the variables upon one another.

What is needed instead is a collection of data that is reasonably

representative of the variety of situations that can occur in the

system being modeled.
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The next step is to construct a mathematical network, known as an

Adaptive Learning Network (ALN), which is a nonlinear hypersurface

linking inputs to output. A generalized equation is constructed

to link an output value to each possible pair of input variables.

Special purpose computer programs are used to find the coefficients

(the weights assigned to the variables) for each equation that makes

it best fit the data. Those equations and variables that consistently

produce the smallest prediction errors are determined. Additional

equations are then constructed that examine interactions among

four, eight, or more variables instead of only two. These

additional equations result in added layers in the network and are

retained if they can improve the prediction accuracy.

A model in the form of a network that has had its coefficients

determined and has been reduced to the essential variables is

called "adaptively trained." The synthesis of this model has

proceeded directly from examination of an experimental data base

without human intervention; hence the term "self-learning." To

make certain that the model has indeed discovered for itself the

pertinent physical laws, additional experimental data not used in

the training, or synthesis, phase are introduced to test the

ability of the model to generalize on its prior experience in

dealing with new situations.

4.2 TYPES OF ALN MODELS

In this project, 15 nonlinear ALN models were synthesized to predict

each of the tentative highway risk factors (given in the Causal

Network of Figure 2.2). There were 15 such factors (not counting

the first layer). The resulting ALN models were used in one of two

ways depending on the nature of the dependent (i.e., modeled)

variable.
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If the dependent variable was of a "continuous" nature, such as

vehicle speed, the ALN model was constructed to yield the output

as a continuous variable. However, if the dependent variable

could only assume two values as in N/C (=1) or C (=2), the ALN

model was used as a classifier. In this case, the modeled hyper-

surface partitioned nonlinearly the input data space into two

regions -- one associated with N/C outcomes and the other associated

with C outcomes. So, for example, if a particular input vector

was determined by the model to be on the N/C side of the separating

decision boundary, a value of 1 was output. Most of the 15 models

were of the classifier type due to the characteristics of the ITADB.

4.3 FORM OF ALN MODELS

The methodology associated with ALN synthesis is described more

fully in References [3-8] by Barron and Mucciardi. In summary,

two-input one-output "elements" are used to construct an adaptive

learning network. The output of each element, y, is a quadratic

function of its two inputs x. and x.:

y = w Q + w ^ + w 2 X j + w3x±x. +^4x±
2 + w 5 X j

2

All combinations of inputs are considered two-at-a-time as above.

For given identities of x. and x., an optimization algorithm is

used to find the coefficients, w, that yield the smallest error in

fitting y to the values of x. and x. in a "fitting" subset of

the data. Those combinations of variables yielding a low error rate

(on an independent "selection" subset of the data) are then

retained and the rest discarded. Thus, the candidate input list

is pruned to the most informative subset. This produces the first

layer in the ALN.
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The outputs of Layer 1 become inputs to Layer 2 and the process is

now repeated. Since each input to Layer 2 is a function of two x's,

we are now considering functions of functions; thus the complexity

of the model increases, but more slowly than its functional power.

Only those combinations from Layer 1 are retained that produce

the greatest improvement in accuracy. Now the outputs from Layer 2

become inputs to Layer 3; and so on.

The training procedure is terminated when it is established that

the addition of further layers would produce an "overfitting"

condition; that is, the model would become so adept at fitting

the data used to train it that it would be unable to generalize

to data not previously seen. Special algorithms are used to detect

and avoid this condition.

An ALN Model thereby assumes the form of a multinomial — a poly-

nomial in many variables — of the (automatically) selected inputs.

The extent and type of non-linearities in model structure can be

discovered and implemented during model synthesis. Thus, the

ALN methodology is a powerful tool for use in data modeling

instances where little or no knowledge exists regarding the func-

tional relationship of dependent to independent variables.

4.4 FOUR APPROACHES TO MODEL SYNTHESIS

In consultation with the NHTSA Contract Technical Manager, four

approaches to model synthesis were devised. The approaches differed

only in which variables were used as the independent variable

inputs when constructing a model for a particular dependent

variable.
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Approach Variables Used as Model Inputs

I Those that had a direct link to the
dependent variable in the conjectured
Causal Network.

II Only those that appeared in the immediately
preceding layer.

Ill Those that appeared in any of the previous
layers.

IV Same as III, plus those that appeared in
the same layer as the dependent variable.

All four approaches could not be evaluated due to time and cost

considerations. Approach IV was selected because it was the most

inclusive.

The 15 risk factor models were therefore constructed in the following

way. First, the dependent variable was identified. Second, the

candidate independent (i.e., input) variables were, via Approach

IV, all those in the same layer and any preceding layers of the

Causal Network (Figure 2.2). Third, the ALN modeling algorithm was

used to determine automatically: (a) the subset of candidate inputs

most relevant for modeling accurately the dependent variable, (b)

the structure of the model, and (c) the weighting coefficients for

the various terms within the model. Fourth, a fraction of the

data that was not used to synthesize the model was then employed

to establish model accuracy on data not previously seen.

One of the very desirable benefits of the adaptive learning algorithm

in this project was its capacity to discover — from the data —

the model structure. This meant that the conjectured Causal Network

could be used as a guide to initiate the modeling efforts, but that

another structure was found through use of the algorithm. The final

Causal Network — "wired" automatically from accident data — could

then be compared to the original structure to search for causative

links not previously considered or to reinforce already conjectured

links.
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5. RESTRUCTURING OF CAUSAL NETWORKS
VIA ALN MODELS

5.1 MODELING RESULTS

ALN models were constructued for each of the variables in the con-

jectured Causal Network for Layers 2 through 5. These included

Variable 13 (miles driven during last 12 months) through Variable

29 (improper overtaking), inclusive.

The 15 resultant models are shown in Figures 5.1 through 5.15.

In each figure the inputs that were selected are given as well

as how they interact. The latter result is obtained by tracing

a particular input variable's path through the net. The weighting

coefficients for each element are given at the bottom of each

figure.

As described in the previous section, all the variables to be

modeled with the exception of 13, 18, 19 and 21 were binary

valued. Hence, the ALN models were trained as classifiers for

these 11 variables. Each of the 11 binary variables was coded

as 1 for "not-cited" and 2 as "cited" as an accident-causative

factor. The ALN's output was interpreted as N/C if it was less

than 1.5 and, C otherwise. Thus, in 11 of 15 cases, the ALN

models were pattern classifiers.

5.2 COMPARISON OF CONJECTURED AND RESTRUCTURED CAUSAL NETWORKS

Using the ALN models, each node in the Causal Network was recon-

structed and compared to the original conjectured structure.

Appendix B shows the reconstruction of the Causal Network using

the ALN models along with the original structure.
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The comparison between the original and restructured network is

given in Table 5.1 for the 15 variables. The 15 dependent variables

are shown as columns, and an open circle is used to denote a link

that was conjectured to exist between a given pair of independent

and dependent variables. An "x" is used to denote those links

that were found by the respective ALN models. A circle with an

"x" within it denotes agreement between the two procedures. For

example, the first of the 15 dependent variables was x^o, "miles

driven during last 12 months," shown in column one. Four factors

were conjectured to be predictive of x.,,, — (1) driver sex, (2)

driver age, (3) driver occupation, and (4) vehicle age. The ALN

model found that factors (1), (3), and (4) were indeed predictive

of x 1 3 but not so for factor (2). In addition, another factor,

urban/rural, that was not conjectured to link to x-3 was found to

be relevant. It can be seen that there were cases in which the

agreement was high (e.g., x-io)> quite different (e.g., XnJ, and

considerably simpler due to the ALN restructuring process (e.g.,x-g).

The computer classification results derived from the ALN models

are summarized in Table 5.2. The data set was divided into three

subsets: Fitting, Selection, and Evaluation. The Fitting set

was used to train the adaptive learning network, the Selection

set for selecting the best subset of independent variables, and

the Evaluation set to test the performance of the ALN model.

The best results were obtained for dependent Variable 16 (driver

impairment), which was 90 percent accurate for the fitting, 93

percent accurate for selection, and 95 percent accurate for evalua-

tion. The worse evaluation results were for dependent Variable 26

(followed too closely), which was only 42 percent accurate in

classification.
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TABLE 5 .1

COMPARISON BETWEEN CONJECTURED AND ALN-DETERMINED CAUSAL NETWORK

Independent

j
7. Day

2. Weather

3. Dr. Sex

4 . Dr. Age

5. Dr. Occup.

6. Vefa. Age

8. L'rb./Bur.

9. Hway Type

17. Time

11. Str./Curve

12. Inters./Non Int

'3. Mi. Driven

.A . Ll. Cond. ,

"5. Rd. Surface

16. Dr. Impair.

18. Traffic

'-9. Rd. Use

21. Post. Speed

22. Vehicle Speed

23. Vision Obs.

24. Dr. Dist.Ir.att.

25. Left of Ctr.

23. Foil. Close

27. Yield/Stop

28. Turn/Sig.

-9. Overtaking

13
Miles
Driven

®
0

i X

•

- "

14
Light
Cond.

0

X

15
Road
Surf.

X

®

X

X

- - - - -

16
Driver
Impai r.

—0-
X

$
0

0

0

0

0

18
Tratfic
Cond.

®

X

0

0

- " • —

19
Road
Use
- .

X

X

1
0

21
Posted
Speed

®
X

" 1 """ "
I

X

- - -- - -

22
Vehicle
Speed

0

23
Vision
Obs./Obst.

0

o ;
\JP X

0

»

o
0
0

1

®

0

0

X

0 0
0 i 0

0

0

0

0

0

24
Driver
Dis .
Inatt.

X
0
0
X

0

0

X

X

0

0
0

0

25
left of
Center

- x 1

X

X

0

0

0

0

26
Fo1. Too
Closely

X
-

27
Fail to
Yield/

*

X

X

X _,

X

X

®

X.
i °
j0 "

0

®
0

0

0

o

X

0

0
0 - J

Imp. Turn/
Fail .to Si 'Tnal

X

X

0

X

0

0

0

0

0

x

29
Improper

Overtaking

X

X

X

0

0

0

0

a
®
X

-

X

0 V a r i a b l e Given in t h e Con jec tu r ed Causal Network

X V a r i a b l e S e l e c t e d by ALN Model

X Va r i ab l e O r i g i n a l Jy Con jec tu red and S e l e c t e d l>y ALN Model



TABLE 5.2

ALN CLASSIFICATION RESULTS

Variable Number and
Variable Identification

14 Light Condition

15 Road Surface

16 Driver Impairment

22 Vehicle Speed

23 Vision Obscured

24 Driver Distracted

25 Drove- Left of Center

26 Followed Too Closely

27 Failure to Yield/Stop

28 Improper Turn

29 Improper Overtaking

Classification Results
In Percentage

Fitting

81

89

90

70

62

55

66

63

59

57

76

Selection

86

93

93

75

54

58

66

55

63

50

69

Evaluation

79

91

95

64

46

52

65

42

56

51

71
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By examining closely the data set, it can be seen why the perform-

ance of the ALN model was poor on Variable 26 (tailgating). Out

of the 720 records, 711 of these records had zero value (not cited

as a factor for the accident), and 9 records had other values.

Hence, Variable 26 contained virtually no information in analyzing

the causal network because this variable was not cited at all 99

percent (711/720) of the time.

The remainder of the ALN classification results varied from 50

percent to over 90 percent. The conclusion reached from computer

analysis of the causal network; was that the ALN methodology could

indeed be used to assess the highway safety program effectiveness

and to analyze the accident data base quantitatively.

The links that were found in the restructured Causal Network can

be examined by highway safety planners to assess the effects of

past and future actions.

5.3 EXAMPLE OF RESTRUCTURED CAUSAL NETWORK

An example of a restructured Causal Network is shown in Figure 5.16

(which is the same as Figure B.8) for variable X22, "vehicle speed."

It can be seen that 14 factors were conjectured originally to

influence vehicle speed. Only two of these -- driver age and

urban/rural — were found to be needed. Therefore, this risk

factor in the Causal Network could be predicted using only 2 of

the 14 conjectured links, thereby reducing the data collection

demands. The remainder of the 14 networks are given in Appendix

B; the correspondence between Figure 2.2 and Figures B.I through

B.15 is summarized in Table 5.1.
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6. EFFECTS OF DRIVER AGE ON ACCIDENT-
CAUSATIVE RISK FACTORS

6.1 RISK FACTORS INFLUENCED BY DRIVER AGE

Driver age is considered to be an important factor in highway

accidents. For this reason it was decided to study this variable

after the 15 models had been created to establish the quantitative

relationship between driver age and the risk factors found to be

influenced by it. This exercise also served to demonstrate the main

objective of the project, which was to establish the utility of the

ALN approach for making quantitative use of Causal Networks linking

highway safety program outputs to accident involvement.

It was found, by ALN synthesis, that seven risk factors were in-

fluenced directly and two risk factors were influenced indirectly

by driver age:

Direct Influence Indirect Influence

Traffic Conditions Posted Speed

Road Use Improper Turn/Failure to

Vehicle Speed Signal

Vision Obstructed

Tailgating

Failure to Yield/Stop

Improper Overtaking

Hence, using the appropriate ALN model, the effect of driver age

on that risk factor could be studied quantitatively.
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6.2 QUANTITATIVE EFFECT OF DRIVER AGE

For example, the ALN model for x r o, Vehicle Speed, evolved into

a fairly simple structure of only a one-element network of the

two inputs, driver age (DA) and urban/rural (U/R):

Vehicle Speed = w Q + w^DA + w2U/R + w3(DA)(U/R)

+ W 4(DA)
2 + W 5(U/R)

2

The coefficients w, to w 5 were found to be equal to zero, resulting

in Vehicle Speed, VS, as,a linear function of DA and U/R:

VS a 2.24 - 0.005(DA) - 0.397(U/R)

Since DA varied from 16 to 82 and. U/R was binary, taking on

values 1 or 2, the value of their respective coefficients did not

reflect their relative importance on VS. To find this, each

coefficient needed to be multiplied by the standard deviation of

its associated variable, thus:

= (-0.005) a D A = (-0.005)(14.99) = -0.072

and,

= (-0.397) aU/R = ;(-0.397)(0.483) = -0.192

Therefore, the rate of change of VS with respect to DA (i.e., the

first derivative) was -0.072 and with respect to U/R was -0.192,

on a normalized basis.
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In the latter regard, two items were of interest. First, both

partial derivatives were negative, meaning that Vehicle Speed

was found generally to decrease as driver age increased and/or

as the driving was done in an urban setting. (The latter result

followed from the coding of U/R as 1 for rural and 2 for urban;

so as U/R increased, VS decreased, and U/R increased by shifting

from a rural to urban road.)

Second, the ratio of U/R's effect to DA's effect on VS was

0.192/0.072, which is equal to 2.65. Hence, Vehicle Speed was con-

siderably more influenced by the Urban/Rural risk factor than by

the Driver Age exogenous variable.

The contour plot of Figure 6.1 shows the effect of DA and U/R in

graphical form. The line represents the locus of points for which

VS =» 1.5, that is, the boundary between VS not being cited as an

accident-causative risk factor (VS<1.5) and being cited (VS>1.5).

It can be seen that DA has very little effect in causing VS to

become accident-causative, VS>1.5, for a given value of U/R.

However, when U/R is rural (U/R=l), VS is more often cited as an

accident-causative factor (VS>1.5).

Three other contour plots are shown in Figures 6.2 - 6.4 for which

DA effects the respective risk factor in a more complex, nonlinear

manner.

In Figure 6.2, vision obstructed is the dependent variable and

vehicle age, driver age and intersection/non-intersection were the

independent variables. The ALN equation in this case was nonlinear

in the three independent variables. Since there were three inde-

pendent variables and one of them, Variable 12 (intersection/

non-intersection) was binary, the decision boundaries for vision

obstructed were plotted separately for intersections and non-

intersection. As expected, the probability that vision obstructed

was cited as a factor for the accident at the intersection was

higher than that at the non-intersection.
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Figure 6.3 is the contour plot for dependent Variable 26

(tailgating); the independent variables were posted speed and

driver age. The results show that for drivers below 30 years of

age and posted speeds less than 55 miles per hour, tailgating

was likely to be cited as a factor contributing to the accident.

A complex and interesting contour plot resulted from the traffic

condition model shown in Figure 6.4. The independent variables

were driver age, day of week, time of day and road straight/

curved. Traffic condition was coded as 1 for heavy, 2 for

moderate, 3 for light and 4 for none. (The contour plots for

traffic conditions are for the mean value of 2.5.) Around the

noon hour, traffic conditions were moderate-heavy — regardless

of day of the week and driver age. Similarly, during the midnight

hours (hours 21 to 24 and 1 to 4), traffic conditions were none-

light regardless of day of the week and driver age. The impor-

tance of this contour plot is that it gives the analyst a visual

picture of the complex causal relationship between the dependent

variable and the input independent variables.
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APPENDIX A

CHARACTERISTICS OF THE ITADB HIGHWAY
ACCIDENT DATA BASE

A.I ANALYSIS OF THE INDIANA TRI-LEVEL ACCIDENT DATA BASE

In the Indiana tri-level accident data base subset, a total of 98

variables were recorded for each of 720 accidents. Table A.I gives

the descriptions of these 98 variables. However, only 29 variables

(exogenous variables, risk factors, etc.) were shown in the Causal

Network (Figure 2.2). The relationships between the 29 Causal

Network variables and the 98 ITADB variables are given in Table A.2,

Variable 7 (wt/HP ratio), 10 (road separation), 17 (number of

occupants), and 20 (traffic controls) of the Causal Network,

were not recorded in the ITADB.

The 98 variables in the ITADB could be divided into the following

five types of variable :

Type 1 - Informational Variables
Traffic Units, Day of Week, etc.

Type 2 - Environmental Variables
Weather Condition, Condition of Road Surface, etc.

Type 3 - Exogenous Variables
Age, Sex, Marital Status, etc.

Type 4 - Numerical Variables
Speed Limit, Frequency of Driving a Particular Road, etc.

Type 5 - Risk Factor Variables
Recognition Error, Inattention, Position of Car on Road, etc
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TABLE A.I

INDIANA TRI-LEVEL ACCIDENT DATA BASE VARIABLES DESCRIPTION

Variable

Number Description

P01 Phase No. (2,3,4,5)

P03 Number of Traffic Units (1,2,3,4)

P06 Traffic Unit Number

P08 Day of Week of Accident

P09 Hour of Day of Accident

P10 Condition of Road Surface

Pll Weather Conditions

P12 Urbanization at Accident Location

P13 Highway Classification

P14 Accident Location Classification

P15 Character of Road-Horizontal

P16 Light Conditions

P17 Type of Road Surface

P18 Speed Limit at Accident Location

P19 Sex of Vehicle Driver

P20 Age of Vehicle Driver

P21 Occupation of Vehicle Driver

P22 100's of Miles Driven in Last 12 Months

P23 Age of Vehicle

P24 Drugs Taken Within 48 Hours of Accident

P25 Alcohol Consumed Within 24 Hours of Accident

P26 Traffic Conditions at Time of Accident
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Table A.I: (Continued)

Variable

Number Description

P27 Frequent Driving Road

P28 Recognition Errors

P29 - Driver Failed to Observe, Stop for Stop Sign
P30 - Recognition Delays - Reason Identified
P31 * Inattention
P32 - Traffic Stopped, Slowing
P33 - Position of Car on Road
P34 - Road Features - e.g., curve, lane
P35 - Road Signs, Signals
P36 - Cross-Flowing Traffic
P37 - Inattention - Other
P38 * Internal Distraction
P39 - Event in Car - e.g., Sudden Noise
P40 - Radio, Tape Adjustment
P41 - Window Adjustment
P42 - Conversation with Passenger
P43 - Internal Distraction - Other

P44 * External Distraction
P45 - Other Traffic
P46 - Driver - Selected Outside Activity
P47 - Activity of Interest Outside Vehicle
P48 - Sudden Event Outside Vehicle
P49 - External Distraction - Other

P50 * Improper Lookout
P51 - Pulling Out from Parking Space
P52 - Entering Traffic from Street, Alley
P53 - Prior to Changing Lanes, Passing
P5<* - Improper Lookout - Other
P55 * Perception Delays - Other, Unknown
P56 - Traffic Stopped, Slowing
P57 - Position of Car on Road
P58 - Road Features - e.g., Curve, Lane
P59 - Road Signs, Signals
P60 - Cross-Flowing Traffic
P61 . - Perception Delays - Other

P62 Comprehension, Reaction Delays

P63 - Delayed Comprehension

P64 . - Delayed Reaction
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Table A.1: (Continued)

Variable
Description

P65 Improper Maneuver

P; 6 - Turned From Wrong Lane

P';7 - Drove in Wrong Lane for Direction

F68 - Drove in Wrong Direction of Travel

P69 - Passed at Improper Location

P70 - Improper Maneuver - Other

P71 Improper Driving Technique

P72 - Cresting Hills - Driving in Center Road

P73 - Breaking Too Late, Inappropriately

P74 - Stopping Too Far Out in Intersection

P75 - Driving Too Close to Center Line, Edge

P76 - Slowed Too Rapidly

P77 - Improper Driving Technique - Other

P78 Excessive Speed

P79 - For Road Design - Regardless of Traffic

P80 - In Light of Traffic, Pedestrians

P81 - In Light of Weather Cpnditions

P82 - Combination of Design, Traffic, Weather

P83 - Excessive Speed - Other

P84 Tailgating

P85 Inadequate Signal

P86 - Failure to Signal for Turn

F&7 - Failure to Use Horn to Warn

P88 - Inadequate Signal - Other

P89 Alcohol Impairment

POO Other Drug Impairment

P91 Fatigue
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TABLE A.I: (Continued)

Variable
Number Description

P92 View Obstructions

P93 - Hillcrests, Dips, etc.

P94 - Roadside Embankments, Escarpments

P95 - Roadside Structures and Growth

P96 - Stopped Traffic

P97 - Parked Traffic

P98 - View Obstructions - Other
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RELATIONSHIP
AND

TABLE A.2

BETWEEN CAUSAL NETWORK VARIABLES
INDIANA DATA BASE•VARIABLES

Causal Network
Variable
Number

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18

19

20

21

22

23

24

25

26

27

28

29

Related Variables from Indiana

P08,

Pll

P19

P20

P21

P23

—

P12

P13

_

P15

P14

P22

P16

P10

P89,

—

P26

P27

-

P18

P78,

P92,

P30,

P33,

P84

P29,

P66,

P53,

P09

P90, P91

1

P79, P80, P81, P82,

P93, P94, P95, P96,

P31, P38, P44, P50,

P57, P67, P68, P72,

P36, P51, P52, P60

P85

P69

Data Base

P83

P97, P98

P55

P75
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The above five variable types were not mutually exclusive. For

instance, the age variable was an exogenous variable (Type 3) as

well as a numerical variable (Type 4). A partitioning of the 98

variables of the ITADB into the five variable types is shown in

Table A.3.

Upon examination of the ITADB, a number of problems was revealed:

(i) missing or unknown variables, (ii) unbalanced distributions

of variables, and (iii) method of coding variables.

If the variable was missing or unknown, one of the two following

methods could have been used to assign the missing value:

(I) Sample Average Method - The missing variable could

have been estimated by the sample average from those

records or observations similar to the missing one.

(II) Monte Carlo Method - The missing variable could have

been replaced by the outcome of a random experiment

whose probability distribution was the frequency of

occurrence of this variable in the data base.

The Monte Carlo Method was used in this investigation.

In the simulation of the Causal Network by the ALN modeling approach,

the values of variables Types 1, 3, and 4 were used directly. The

Type 2 (environmental) variables and the Type 5 (risk factor)

variables were modified prior to the simulations as follows:

(I) No Transformation - The value of the variable as coded

in the ITADB was used.
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TABLE A.3

TYPES OF VARIABLE IN INDIANA DATA BASE

Type

1

2

3

4

5

Variables

P01 to P09

P10 to P17

P19, P21

P18, P22, P23, P27

P28 to P98

Description

Informational'Variables

Environmental Variables

Exogenous Variables

Numerical Variables

Risk Factor Variables
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For example, variable Pll (weather condition) in the ITADB was

coded as "1" for clear, "2" for rain, "3" for snow, "4" for fog,

and "8 r for other. The same coding ,was used in the highway

accident data in this study when no transformation was used.

(II) Counting Method - This method set the value of the

variable equal to one plus the number of cited ITADB

variables that were related to this variable (Table A.2)

The counting method was chosen to code variables 22 to 25 and 27

to 29 in this study because of the small data base in ITADB and

unbalanced distributed variables. Variable 27 (failure to yield/

stop) was related to variable P36 (cross-flowing traffic), etc.

P36 is the variable related to the ITADB and indicated by the

prefix P. P36 was not cited 711 times and cited only 9 times as

a factor for the accident in the ITADB. Hence, this variable P36

was highly unbalanced.

The complete summary of the ITADB is given in Table A.4. Column 1

is the variable number related to the Causal Network and Column 3

is the corresponding variable in ITADB. The number of possibly

different values a particular variable could achieve is given

in Column 5. The frequency of missing values is listed in

Column 6.

A.2 TYPE OF CODING FOR THE HIGHWAY DATA BASE USED IN THIS STUDY

Variable 1 - Day and Time: Day and Time were replaced
by the following four variables to avoid discontinuities
between the seventh and first days and between 2400 and
0001 hours, respectively:
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V'ariab I e
Number Description

2 IT ,--,m t —.-.1 a y )

Weather

Related
Variables
From IDB

P08

3

4

5

Driver Sex

Driver Age

Driver
Occupation

P19

P20

P21

Descrip t ion

Day of the Week

Weather Con-
ditions

Driver Sex

Driver Age

Occupation

Vehicle Age P23

7

8

9

10

cos (-y-day)

Urban/Rural

Highway Type

sin (srtime)

P08

P12

P13

P09

Day

Urban/Rural

Highway Type

Time of Day

Number of
Di f t'eren t

Values

7

5

2

53

9

22

7

2

o

24

Frequency
of Missing
Values

21

37

55

60

64

69

21

24

21

21

Fr<
Values of

1 Mon
2 Tue
3 Wed
4 Thur
5 Fri
6 Sat
7 Sun

1 clear
2 rain
3 snow
4 fog
8 other

1 male
2 female

See attached table

1 farmer
2 laborer
3 semi-skilled
4 ski lied
5 white-collar
6 professional
7 student
8 housewife
9 other

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
19
20
21
23

— S a m e as Variable

0 rural
1 urban

0 conn ty , eJt y
1 -state

1 am
2
3
1
5
6
7
8
9
10
11
12 noon
13 1 pm
14
15
16
17
18
19
20
21
22
23 11 pm
24 midniRhl

•qufMl

Val ij

96
12(1

129
11 1
106
73
(i-l

.)L'O
135
18
1
U

130
2 35

2
HI
62
102
18

112
17K
4 3
28

IS
71
75
72
56
76
art
52
16
1(5
28
10
1 1
l>

5
1
o
1
1
3
1
2

1 —

229
467

56'J
130

6
1?
3
1
3
7
1

10
'.lo
16
IS
52
66
17
64
10-1
9-1
<M
9

32
31
1 1
1 j
5



Table A.4 - (Continued)

Variable
Number

11

12

13

14

15

16

17

18

19

21

Desrription

Road Straight
or Curved

Intersection or
Non Intersection

Miles driven -
last 12 months

Light Conditions

Road Surface

Driver Impair-
ment

cos (fltime)

Traffic

Road Use

Posted Speed

Vehicle Speed-
Speed too fast

Related
Variables
From IDB

P15

P14

P22

P16

P10

P89

P90

P91

P09

P26

P27

P18

P78

P79

P80

P81

Description

Road Straight
or Curved

Location
Classification

Miles driven-
last 12 mo.

Light Condition

Road Surface

Due to alcohol

Due to Drugs

Due to Fatigue

Time of Day

Traffic Condition

Frequency
Driving Road

Speed Limit

Excessive
Speed

For Road Design,
not traffic

In Light
Traffic,
Pedestrians

In Light of
Weather Cond.

Number of
Different

Values

2

6

59

3

4

4

4

4

24

5

7

10

5

5

3

4

Frequency
of Missing

Values

44

22

134

37

35

0

0

21

28

72

154

0

0

0

0

Values

1 straight
2 curved

1 intersection
roadway

2 culvert int.
3 non road
4 RR Crossing
5 bridge over-

pass
8 other

Frequency
of Values

556
tO'J

342
1

92
2

1
260

--See Attached Table --

1 day
2 dark
3 dawn or duak

1 dry
2 wet
3 snow,ice
8 other

0 N/C
10 Cas-Pos.
20 Cas-Prob.
30 Cas-Certain

0
10
20
30

0
10
20
30

556
110
17

487
166
28
4

696
11
11
2

703
g
6 •

2

703
10
6
1

—Same as Variable 1 0 —

1 heavy
2 moderate
3 light
4 none
8 could not

1 daily
2 2/week
3 I/week
4 2/mo.
5 1/rao.
6 seldom
7 first time

1 20 mph
2 25 mph
3 30 mph
4 35 mph
5 40 mph
6 45 mph
7 50 mph
8 55 mph
10 65 mph
11 other

0
2
10
20
30

0
2

10
20
30

0
10
30

0
10
20
30

62
77
89
97
367

311
108
60
25
29
85
30

35
5

344
4 7
21
70
17
13
12

636
4
|^
33
33

670
4
7
14
25

715

3

705
3
11
1
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Table A. 1 - (Continued)

V a r i a b l e

N'umlie r

l'i m t i nued

23

2 1

Doser i pt i on

Vision Obscured

Driver Dis-
tracted, In-
attentive

Related
Variables
From IDB

P82

P83

P92

P93

P91

P95

P96

P97

P98

P30

P31

P38

P44

PSO

P55

Descr ip t ion

Comb. Design,
Traffic and .
Weather

Other

View Obst ruc-
tion

Hillcrests,
dips, etc.

Roadside Em-
bankments ,etc.

Roadside Struc-
tures &
Growth

Stopped
Traffic

Parked
Traffic

Other View
Obstructions

Reeogni tion
Delay-Reason
Indent.

Inattention

In t ernal
Dist raction

External
Dis tract i on

Improper
Lookout.

Pe rcep t ion
Delays - other
unknown

Number of
Di fre rent
Values

4

1

6

3

4

4

5

4

4

4

4

•4

• I

Frequency
of Missing

Values

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Va!

0
10
20
30

0
10
20
30

0
1
2

10
20
30

0
20
30

0
10
20
30

0
2
L0
20
30

0
10
20
30

0
1

10
20
30

0
10
20
30

u
10
20
30

0
10
20
30

0
10
20
30

0
1(1
20
Hi)

0

10

20
30

0
1
10
20
30

[ r - , . , | u . - f

.1 V i !

( I 1 )
1

7 I t )

71 2
• 1

<>7S
2

6

703

(if)';
l
3

17
6

7 1 1
1

171
3 1

1-1
2 1

1
LI

L
12
1 I

25 Drove Left
of Center

P33 Position of
Car on Road

P 0 7

Position of
Car on Road

Drove in Wrong
Lane for
IM ro<-t. i on

0
10



Table A.I - (Continued)

V a r i a b l e

\"umbe l"

(I'ont i nuc d 1

26

'•1 1

28

29

[ii.'scr i pt". ion

Followed too
Closely

Failure to
Yield/Stop

Improper Turn,
Failure to
5i gnal

Improper
Overtaking

Re La ted
Variables
From IDD

P66

P72

P75

P84

P29

P36

P51

P52

P60

P66

P85

P53

P69

Description

Turned From
Wrong Direction
of Travel

Cresting Hills-
Driving in
Center of Road

Driving to
Close Center
Line, Edge

Tailgating

Driver Fail obs.
or Stop for Stop
Sign

Cross-Flowing
Traffic

Pulling Out from
Parking Space

Entering Traffic
from Street,
AUy

Cross-Flowing
Traffic

Turned From
Wrong Lane

Inadequate
Signal

Prior to Changing
Lanes.Passing

Passed at Im-
proper Location

Number of
Di fferent
Values

4

4

3

4

4

4

3

4

4

3

5

3

3

Frequency
o f Missing
Values

0

0

0

0

0

0

0

0

0

0

0

0

0

Values

0
10
20
30

0
10
20
30

0
10
20

0
10
20
30

0
10
20
30

0
10
20
30

0
20
30

0
10
20
30

0
10
20
30

0
10

0
1
10
20
30

0
20
30

0
'20
30

Frequency
ol' Values,

717
1
1
1

7X2
1
4
3

716
1
3

711
4
4
1

689
3
2

26

710
2
3
5

714
1
5

649
1
19
51

712
2
3
3

710
1
9

687
1

20
10
2

710
1
9

713
9

1 ̂ Jlli1 4 - Driver Age Frequency Variable 13 - Miles Driven Last 12 Months

Hi
17
18
19
20
21
22

24
25
2(j

27
28
29
:i0

31

32
33

21
35
38
4!)
.".3
:"1
4]
23
29
27
21
27
16
11
7
11
10
12

m
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Frequency

4
7
9
6
8
6
7
10
6
4
6
9
6

4
10
4
5
4

Age

52
53
54
55
56
57
59
63
64
65
66
87
68
69
71
74
82

Frequenc

10
7
5
5
2
I
4
1
4
6
3
1
2
3
3
2
1

M i 1 es

100
200
500
600

1,000
1,200
1,500
1,800
2,000
2,500
3,000
3 ,500
4,000
4,500
5,000
5 ,500
6,000
6,500
7,000
7.200

Frequency

2
2
4
1

11
4
2
1
12
3
12
3

12
1

34
1

18
1

13
1

Miles

7,500
8,000
9,000
9,500
10,000
10,500
11,000
12,000
12,500
13,000
13,500
14,000
15,000
16,000
17,000
17,500
18,000
19,000
20,000
22.000

Frequency

3
21
10
2

102
2
9
55
2
12
1
9
68
6
3
7
3
1

44
2

Mi Les

22,500
23,000
24,000
25,000
27,500
29,000
30,000
35,000
38,000
40,000
45,000
50,000
65,000
70,000
75,000
80,000
82,000
100,000
127,000

Froquenc

1
1
3

2J

1
1
17
7
1
7
1
8
1
1

L
1
1
4
1
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sin (-y- Day) = Variable 1

2-rr

cos (~ Day) =

2TT

sin (—• Time) =

2TT
cos (~ Time) =

Variable 7

Variable 10

Variable 17

The values of•Day were 1 (Monday), 2 (Tuesday), 3 (Wednesday,
...,7 (Sunday). The values of Time were 1 (One A.M.,
2, 3, ..., 12 (Noon), ..., 24 (Midnight). (Note that
variables 7, 10, and 17 in the conjectured Causal Network had
no corresponding variables in ITADB. Hence these variable
number positions were used as shown in the above equations.)

Variable 2 - Weather: Coded as binary -- 1 for clear and
2 for not clear.

Variable 5 - Driver Occupation: Replaced by 9 binary
variables, numbered 30 to 38. Variable 30 took on a value
of 1 for non-farmer and 2 for farmer. Variable 31 took
on a value of 1 for non-laborer and 2 for laborer, etc.

Variable 8 - Urban/Rural: Coded as 1 for rural and 2 for
urban.

Variable 9 - Highway Type:
2 for state.

Coded as -1 for county/city and

Variable 12 - Intersection or Non-Intersection: Coded .as
1 for intersection or non-road, and 2 for culvert inter-
section, railroad crossing, bridge overpass, or other.

Variable 13 - Miles Driven Last 12 Months:
of 100 miles driven in the past 12 months.

6

Coded in units
Any value

greater than 500 units was coded as 600; only ten records
out of 720 had more than 50,000 miles driven in the
last 12 months.

Variable 14 - Light Conditions:
2 for dawn, dusk, or dark.

Coded as 1 for day and
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Varibale 15 - Road Surface: Coded as 1 for dry road
surface and 2 for wet, snow, ice, or other adverse
conditions.

Variable 18 - Traffic: Coded as 1 for heavy, 2 for moderate,
3 for light, and 4 for none. When the value of this
variable was equal to 8, meaning it could not be determined,
this variable was changed to be interpreted as "unknown"
(i.e., its value was generated by the Monte Carlo Method).

Variable 16 - Driver Impairment: Coded as 1 plus the number
of cited ITADB "P" variables related to this variable.

Variables 22 to 25 and 27 to 29: Coded as 1 plus the number
of cited "P" variables related to these variable numbers.

Variable 26 - Followed Too Closely: Coded as 1 for not cited,
and 2 for cited.

The coding of the accident data is summarized in Table A.5.

This accident data base was used to simulate the Causal Network

in analyzing highway safety program effectiveness using the ALN

modeling approach. Representative computer results were discussed

in Section 5.
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TABLE A-5

ACCIDENT DATA BASE FOR ALN MODELING

Variable
Nirrnbr-r

1

9

.10

11

12

Description

sin(^day)

2

3

4

5

6

7

8

Weather

Driver Sex

Driver Age

Driver Occupation
Replaced by Variables
30 to 38

Vehicle Age

cos(-^day)

Urban/Rural

Highway Type

Road Straight or Curved

Intersection or
Non-Intersection

Val ues

1 Mon
2 Tue
3 Wed
4 Thurs
5 Fri
6 Sat
7 Sun

1 Clear
2 Other

Frequency
of Values

96
120
129
111
106
73
64

520
153

--Same as before --

—Same as before --

—Same as before —

Same as Variable 1

229
467

1 rural
2 urban

1 County,City

2 State 130

--Same as before --

—Same as before —

1 Intersection 434
2 Non-inter- 264

section

13 Miles driven-
last 12 months

Light Conditions

Same as before except
60,000 10

1 day
2 other

556
127
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TABLE A.5 (continued)

Variable
Number Description

15

16

Road Surface

Driver Impairment
Due to Alcohol

17

18

Due to Drugs

Due to Fatigue

2TT
cosCrrrtime)

Traffic

Values

1 dry
2 other

1 N/C
2 Cited
1 N/C
2 Cited
1 N/C
2 Cited

—Same as

1 heavy
2 moderate
3 light
4 none

Frequency
of Values

487
198

696
24
703
17
703
17

before—

62
77
89
97

19

21

22

Road Use

Posted Speed

Vehicle Speed -
Speed too Fast

Excessive Speed

For Road Design, not
traffic

In Light Traffic,
pedestrians

In Light of Weather
Condition

Comb. Design, Traffic
and Weather

Other

—Same as

—Same as

1 N/C

2 cited

1 N/C
2 cited

1 N/C
2 cited

1 N/C
2 cited

1 N/C
2 cited

1 N/C
2 cited

before—

before—

636

84

670
50

715
5

705
15
710
10

716
4
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TABLli] A. 5 ( con t inued)

Variable
Number

23

24

Description

Vision Obscured

View Obstruction

Hillcrests, dips, etc.

Roadside Embankments,etc.

Roadwide Structures and
Growth

Stopped Traffic

Parked Traffic

Other View

Obstructions
Driver Distracted,

Inattentive

Values

1 N/C
2 cited

1 N/C
2 cited

1 N/C
2 cited

1 N/C
2 cited

1 N/C
2 cited

1 N/C
2 cited

1 N/C
2 cited

frequency
of Values

614
106

712
8

703
17

678
38

703
17
693
27

711
9

Recognition Delay-
Reason Indent.

Inattention

Internal Distraction

External Distraction

Improper Lookout

Perception Delays -
other unknown

ove Left of Center

Position of Car on
Road

Position of Car on
Road

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

N/C
cited

N/C
cited

N/C
cited

N/C
cited

N/C
cited

N/C-
cited

N/C
cited

N/C
cited

474
246

635
85

674
46

697
23

615
105

675
45

708
12

719
1
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TABLE A.5 (continued)

Variable
Number

25
continued

26

27

28

29

Description

Drove in Wrong Lane
for Direction

Turned From Wrong
Direction of Travel

Cresting Hills-Driving
in Center of Road

Driving too Close
Center Line, Edge

Followed too Closely

Tailgating

Failure to Yield/Stop

Driver Fail obs. or
Stop for Stop Sign

Cross-Flowing Traffic

Pulling Out from
Parking Space

Entering Traffic from
Street, Ally

Cross-Flowing Traffic

Improper Turn, Failure
to Signal

Turned from Wrong Lane

Inadequate Signal

Improper Overtaking

Prior to Changing
Lanes, Passing

Passed at Improper
Location

Values

1 N/C
2 cited

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Frequency
of Values

718
2

717
3

712
8

716
4

711
9

689
31

710
10
714
6

649
71

712
8

1
2
1
2

1
2

1
2

710
10

687
33

710
10

713
7
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FIGURE B . 2 : RESTRUCTURED CAUSAL NETWORK: VARIABLE 14 - LIGHT CONDITIONS
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FIGURE B . 3 : RESTRUCTURED CAUSAL NETWORK
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FIGURE B . 4 : RESTRUCTURED CAUSAL NETWORK: VARIABLE 16 - DRIVER IMPAIRMENT
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FIGURE B . 5 : RESTRUCTURED CAUSAL NETWORK: VARIABLE 18 - TRAFFIC CONDITIONS
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FIGURE B.6: RESTRUCTURED CAUSAL NETWORK: VARIABLE 19 - ROAD USE
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FIGURE B.7: RESTRUCTURED CAUSAL NETWORK: VARIABLE 21 - POSTED SPEED
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FIGURE B.8: RESTRUCTURED CAUSAL NETWORK: VARIABLE 22 - VEHICLE SPEED
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APPENDIX C

SYNTHESIS OF A PATTERN CLASSIFIER VIA
MAHALANOBIS DISTANCE FUNCTION

One distinct characteristic of the highway accident data base was

that data were primarily available from only one class, i.e.,

accident-involved driver population. There were no data available

for the non-accident driver population. This section describes

details for synthesizing a pattern classifier to discriminate

between non-accident and accident-involved populations in such a

situation.

The synthesis of a pattern classifier system to discriminate

between the accident-involved driver population and non-accident

driver population with only the accident-involved data available

could be accomplished in the following way. Let X denote the input

variable vector of N-dimensions which will be used to predict

whether the observation is from an accident-involved population

or not- X is a column vector. The transpose of X is the row

vector X :

X =
 LXJ , ^ 9 ' • • ' > ^JJ

where K1 can be the driver sex, x 2 the driver occupation, xg the

driver age, x. driver impairment, etc. Note that upper case

letters denote a vector, whereas the components of the vector are

given in lower case letters. Let {X1, X2, ..., XNT> be the set of

observations, or training samples, that is available for synthesizing

the pattern classifier. These training samples are all from the

accident-involved driver population only.
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Let U be the sample mean vector and C the covariance matrix for

the accident-involved driver population:

TT — V Y
iN 1

N T

C = ^ ~ Z (X.-U)(X.-D)t

For any unknown input sample X, the Mahalanobis distance can be

computed:

dM(Y) = (Y-U)* Cf^Y-U)

We can construct the following pattern classifier:

Mahalanobis Distance Pattern Classifier

A sample X is said to be from the accident-involved driver popula

tion if:

where t is a non-negative threshold.

The boundary of this region, dM(Y) = t , defines a hyper-ellipsoid

in the N-dimensipnal vector space. The value for the threshold t

can be determined as follows. The sample mean vector U and the

covariance matrix C are estimated using the training set

T = {X1 , Xo, .... XHrr}. By carefully selecting the samples for

the training set T, the "optimum" threshold value can be obtained

that will optimize the performance of the classification system.

Another application of this Mahalanobis distance pattern classifier

was described in Reference [2] by Gonzalez.
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A. 2 ESTIMATION OF CONDITIONAL MEMBERSHIP PROBABILITIES VIA ALN

The Adaptive Learning Network (ALN) modeling technique is a non-

probablistic approach. It is sometimes desirable to compute the

conditional membership probability P(k|X) for class k -- given that

the input (variable) vector is X — from the output of the ALN

model. The following describes three methods for estimation of the

conditional membership probability.

Let y be the output from the ALN model (the dependent variable).

The input vector X is a column vector and X = [x-̂ , x 2 , ..., xN3

is a row vector. The input variables x-, x,, ..., x^ are the

independent variables. The objective is to compute the conditional

membership probability P(yek|X) where "y e k" means that the output

dependent variable is from class k when the input variable vector

is X. In this project, three methods of estimating the conditional

membership probabilities were defined; these are called the Distance

Method, the Normal Distribution Method, and the Histogram Method.

Distance Method

The Distance Method estimates the conditional membership probabilities

using the distance function between the predicted value of the de-

pendent variable, y, and the true values y.. for class 1 and y~ for

class 2. The conditional membership probabilities are given by:

P{yel|x}

P{v£2|x}

d2
dl + d2

dl
d1+d

where d. = | y - y . | ( i = 2 ) is the Euclidean distance between

y and y±.
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Normal Distribution Method

The Normal Distribution Method assumes that the conditional member-

ship probability density functions of the dependent variable y,
o

given that it is class i, are normally distributed, N(y., a. );
2 1 1

i = 1, 2; with mean ui and variance a± . The conditional
membership probabilities are given by :

P{yei|X} = (2ir)~ia± exp {-

where, i = 1, 2.

To compute the above conditional membership probabilities, one

needs to estimate the mean u. and variance a. for each class i

There are two ways to accomplish this purpose:

(1) Assume that both the mean and variance are unknown

and use the sample data to estimate their values.

Let iJ. and a. be the estimators respectively, then:

N

i

N.-:

Ni

3=1

where {y.., j = 1, 2,

for class i; i = 1, 2

samples for class i.

.., N.} are the training samples

and N. is the number of training
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(2) Assume that the variance is unknown and the mean is

y. = y.. The un

sample variance:

. = y.. The unknown variance 6. is estimated by its

where y.. is defined as before.
•*• j

Histogram Method

The Histogram Method estimates the conditional probabilities by

their relative frequencies of occurrence based on the training

samples. The histogram of the dependent variable y is computed

as follows. First, the range of the dependent variable is partitioned
A A

into a total of N™ intervals. Let y and y . be the maximum and
1 max m m

minimum values for the dependent variable. Next, define interval

Ij by:

ij = (?: (j-D*'+ ? m l n < ? < J* * y m l n>; J > i. 2 N T

where,

Then the relative frequency of occurrence, p.., is defined to be the

number of training samples from class i which fall into the

interval I .:
J

= #{yeIj|X€i}/Ni;

= 1, 2; j = 1, 2, .... NT.
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Hence, the conditional probabilities are given by

P{yei|X} = P{yeI.|X} = p ;

i = 1, 2.

An Example

Any one of the above methods can be used to compute the conditional
A

membership probabilities P{yei|X}; i = 1, 2. The following is a

specific example in which these conditional probabilities are

computed.

A

Let the dependent variable y be the highway accident variable x 2 5

("drove left of center"). The independent variables are xi,

i = 1, 2, 3, ..., x 2 4, where:

x^ = Day, Date, Time

x 2 = Weather

x 3 = Driver Sex

x 2 4 = Driver Distracted/Inattentive

The dependent variable y is equal to 1 when the cause ("drove left

of center ) is not cited as the reason for the accident, and y is

equal to 2 when "drove left of center" is cited as the reason for

the accident. The independent variables x^, x2,...., x 2 4 are used

by the ALN model to estimate the dependent variable y. We would

like to compute conditional membership probabilities

P{yei|X}
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where class 1 means "drove left of center" is not cited as the

reason for the accident and class 2 means' it is cited as the

reason for the accident.

Using the Distance Method to compute these conditional probabilities

|y-y9l
2P{yel|X} =

\y-y1\+\y-y2\

ly-y-J + ly-ygl

A.

where y is the output of ALN model when the input independent

variables are x^, x2> . .., x . For example, if y = y^, then

P{yeljX} =
o+\y1-y2\

P{ye2|X} = 0.

A

Similarly, if y = iKy^ + y2)»
 w e have

P{yel|X} = P{ye2|X} = J.

Thus, we have seen that one can compute the conditional probabilities

using the ALN. The following is another hypothetical example.

Prediction of Accident Probability

Let the dependent variable y be the highway accident indicator such

that y is equal to y- when no accident has occurred and equal to y2 when it

is an accident. Let the independent variables be x., x^, ..., xo9>
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which include all exogenous variables, risk factor variables, etc.

given in the Causal Network. The ALN modeling will optimally

select the subset of independent variables which is best in pre-

dicting or estimating the dependent variable y, highway accident.

Let X be this subset of independent variables, where X = {x-, x ...

x. }. Any one of the above three methods can be used to compute the

accident probability.

The accident probability is given by:

P{ye2|X}

where class 2 is for accident, i.e. when y = y2.

Note that in this hypothetical example it has been assumed that

the data base contained samples from both the accident-involved

population and the non-accident-involved population. If the

samples from the non-accident-involved population were not available,

the above method could not be used to compute the conditional

membership probability. However, the Mahalanobis distance pattern

classifier described earlier in this appendix can be synthesized

to discriminate between the accident-involved population and the

non-accident-involved population.
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