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16.

Abstract (Continued)

for the intermediate risk factors using accident data collected in the State
of Indiana.

“The conjectured Causal Network was restructured by examination of which

network variables were determined by the models to influence maximally a
siven risk factor,

The effect of a particular exogenous variable —- driver age —-- on intermediate
risk factors was established quantitatively and it was shown how this infor-
mation could be used to evaluate highway safety program outputs that might
influence such variables. '

The influence of driver age was found to vary from small to considerable in
predicting several highway risk factors.
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FOREWORD

This final report documents the materials, methods, results, con-
clusions and recommendations of the project entitled "Highway
Safety Programs Effectiveness Model' sponsored by the Department
of Transportation, National Highway Traffic Safety Administration,
under Contract No. DOT-HS-6-01496. The research was conducted
during the period September 1976 through February 1977.

Dr. Anthony N. Mucciardi was the Project Manager for Adaptronics,
Inc. The authors thank the NHTSA Contract Technical Managers,
Messrs. Dennis Pastorelle and George Booth, for their advice,
encouragement, and guidance throughout this project.
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1. INTRODUCTION AND SUMMARY
1.1 PROJECT BACKGROUND

In early 1973, a systematic approach to assessing the developments
and achievements of the U. S. highway safety programs was begun.
Three successive phases of inquiry were established:
® Phase I studied how NHTSA state and community grants were
spent by the states, in terms of equipment and services,

and the catalytic effects of these funds produced from
FY 1968 through FY 1973.

e Phase II yielded a broader examination of highway safety
activities nationwide. This study measured national pro-
gram outputs of highway safety efforts at all governmental
levels from 1969 through 1974, using indicators of performance
such as ratios and percentages.

e DPhase III started with the findings of the earlier studies,
and attempted to determine the effects of safety programs
on the level of traffic accidents, injuries, and fatalities.

Preparation began for Phase III in the fall of 1975 with NHTSA
literature searches to explore methodologies and techniques for
approaching a detailed evaluation of national effectiveness. The
ultimate objective of Phrse III was to determine quantitatively the
effects of highway safety programs on the occurrence of accidents,
injuries, and fatalities.

A number of necessary components were recognized as being essential
groundwork toward achieving the Phase III objective. These consisted
of:

e Identifying those factors which related to the occurrence
of accidents, injuries, and fatalities, and defining the
framework in which they operated;

e Determining how these factors interrelated in influencing
the occurrence of accidents, injuries, and fatalities; and



e Determining the structure in which the outputs of the
highway safety programs impacted the occurrence of
accidents, injuries, and fatalities through the alteration
and control of these intervening factors.

Two efforts were initiated to examine and partially develop
these components.

The first of these efforts was designed to approach all of the

above components in an exploratory fashion -- the result being the
construction of a Causal Network which ultimately displayed the
factors believed to influence the occurrence of an accident and
their postulated interdependencies in leading to an accident. " Also
depicted in the network were the outputs of the highway safety
activities as they were believed to interact with the intervening
factors. Such a network provided the means of relating program
outputs to crash reduction, since safety efforts were intended to
impact the factors associated with an accident and thereby reduce
the occurrences of accidents. The expected benefit of a highway
safety countermeasure program was estimated through knowledge of the
functional relationship between the outputs of the prbposed activity
and the associated factors, and in turn the influence of those factors
on crashes.

The development of the methodology and technology required to estab-
lish these functional relationships constituted the second of the

two initial efforts and is the subject of this project and report.
This effort was intended to model mathematically the structure
developed in a Causal Network and to test that structure against
nationally representative data. The technique explored in this
initial modeling task is known as an Adaptive Learning technique.
This approach to modeling is based on the premise that if a relation-
ship exists between one or more independent variables and one
dependent variable, thaf relationship must be encoded in any data



collected on these variables. This premise is employed by
Adaptive Learning in the sense that a given data base is analysed
to determine if any functional relationships display themselves
in the data. If such functional relations are found, those
variables also correépond in the real world. Conversely, if no
functional relations are found, it is concluded from the above
premise that the variables are not predictably related in the

real world.

These procedures have been completely automated by Adaptronics

and were used in this study to explore the potential of the Adaptive
Learning technique for modeling highway safety relationships. This
approach was applied to the factors set forth in a Causal Network
constructed especially for this project. The relationships between
the program outputs, the intervening factors, and the occurrence of
accidents displayed in the network were tested along with various
other variable combinations utiiizing nationally representative
data. In essence, the postulated network was checked and appro-
priately altered so as to trace quantitatively the effects of the
outputs of highway safety programs in deterring accidents through
the control of the intervening factors. This deterrent effect was
estimated by asympotically reducing the outputs of the highway
safety programs to zero and observing the impact of these reduc-
tions on the intervening factors, and in turn, the effect of these
alternations in the intervening factors on accident occurrences.

1.2 PROJECT STATEMENT AND OBJECTIVES

The purpose of this project, "Highway Safety Programs Effective-
ness Model," was to construct a core model to identify and repre-
sent mathematically those interactions outlined in a conceptual

Causal Network.



The specific project objectives were:

e Review for methodological validity, rigor, and feasi-
bility, NHTSA's proposed evaluation approach of creating
a mathematical model of the accident-occurrence structure.

® Apply Adaptronics analysis techniques and supporting
software to the highway safety program impact assessment
model design.

e Conceptualize and construct a mathematical model capable
of functionally relating highway safety program outputs
to the intermediate risk factors and then to accidents,
injuries, and fatalities.

1.3 MODELING METHODOLOGY OVERVIEW

To understand the modeling technique employed and its application
to highway safety, it is helpful to detail better that portion

of the Causal Network which supports the modeling effort. A
hypothetical Causal Network is displayed in Figure 1.1. (The
network of the figure does not show the outputs of the highway
safety programs or the "bottom line" of occurrences of accidents,
injuries, and fatalities.) This network is depicted in a form
believed to be conducive to realization of the model and not
necessarily representative of the actual form of the Causal Network
currently being researched and constructed. However, this hypo-
thetical Causal Network will suffice for describing the model.

The network of the figure flows to the right, i.e., a line from
factor A to factor B (B to the right of A) is interpreted as
representing a suspected influence of factor A on factor B.
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A1l such factors (the A's) that flow into a single given factor (B)

are suspected of either individually or jointly influencing the
given B-factor.

As an example, select as the B-factor "driver impairment"

(Figure 1.1). The A-factors are those believed to influence driver
impairment as shown in the network by a line leading to this B-
factor; namely, day-date-time, driver sex, driver age, driver
occupation, urban vs. rural environment, and miles driven during
the last 12 months. These six A-factors are called the independent
variables for the dependent variable '"driver impairment.”

A model (i.e., an equation) could now be constructed to represent
the relationship between the independent variables (A~-factors) and
the dependent variable (B-~-factor). This was accomplished as
follows:

e The six independent variables were used as inputs for
modeling driver impairment and their structure and
coefficients were learned from recorded data for these
variables, without reliance on assumptions by the analyst
about mathematical structure. The input parameters that
were most informative for the modeling purpose (i.e.,
predicting driver impairment) were automatically selected.
The technique used to perform this task is called an
Adaptive Learning Network (ALN) technique.

e The input variables did not need to be individually
correlated with the modeled (dependent) variable "driver
impairment." Often, nonlinear combinations of the inputs
were correlated with the dependent variable, and when this
occurred, these nonlinear combinations were fou-nd by the
ALN method. Also, the input variables did not need to be
statistically independent; various factors could be used
as inputs even if they showed strong cross correlations.

e As the model (equation) of the relationship between '"driver
impairment" (the dependent variable) and the six factors
(independent variables) evolved during synthesis, it
became as rich in interactions between the input variables,
in their nonlinearities, and in their multinomial structure
as required for optimal fitting of the data.

1-6



e The model could possess as many degrees of freedom
as necessary (even more than the number of data points
used for its generation), but data overfitting was avoided.
Note: the proof that overfitting had been controlled was
to demonstrate on an independent evaluation set of data
that the model accuracy rate was the same as that obtained
on the data for which the model was synthesized; this
proof was obtained routinely using known algorithms.
The model was also realizable in extreme situations
involving very large or very small amounts of data.

e Once the model was obtained, its use to obtain predictions
required little computing effort.

Thir. modeling approach was employed for each selected dependent
variable (B-~factor) displayed in the network (Figure 1.1). The
combined use of these dependent-variable models comprised the

overall model, and as such could be used to deteymine program

impact as outlined in Section 1.1. Notice that the model identified
the key risk factors (driver impairment, following too closely, etc.)
as well as determined their quantitative importance. This knowledge
could be used to decide which highway safety programs were needed to
lessen the undesirable effects of these risk factors.

1.4 MAJOR RESULTS

The major objectives of this project have been accomplished.
Specifically:

e Nonlinear, multivariate models possessing good accuracy
have been synthesized for the intermediate risk factors
(Figure 1.1) using accident data collected in the State
of Indiana.

e The conjectured causal network (Figure 1.1) was restruc-
tured by examination of which network variables were
determined by the models to influence maximally a given
risk factor.

@ The effect of a particular exogenous variable -- driver
age -- on intermediate risk factors was established
gquantitatively and it was shown how this information could
be used to evaluate highway safety program outputs that
might influence such variables.

® The influence of driver age was found to vary from small to
considerable in predicting several highway risk factors.

1-7



1.5 CONCLUSIONS AND RECOMMENDATIONS

It is concluded that the causal network approach of presenting the
complex functional relationships between accident, risk factors, and
endogenous and exogenous variables is mathematically sound and

has utility in assessing highway safety program impact. Computer
simulations performed by Adaptronics demonstrated that the

adaptive learning network modeling methodology can be used effec-
tively in quantitative modeling of causal networks.

One of the main difficulties encountered in this project was in
coping with the definition and encoding procedures of the Indiana
accident data base. As an example, the techniques for assessing
"light conditions'" and '"road conditions'" via visual examination
created a considerable variation among different observers. It
is recognized that these data were recorded under sometimes diffi-
cult circumstances and, occasionally, not even on the same day as
the accident. However, it would definitely be of benefit to
obtain objective measurements whenever possible. For instance, a
light meter could be used to record light conditions if measured
reasonably soon after the accident and a hand-held profilometer
could be employed to measure the road surface condition.

It is additionally recommended that future data bases be collected
with a better balance between the number of cases wherein a risk
factor is cited and not-cited as accident-causative.

Finally, non-accident data should be collected. Even though
there exist methods of synthesizing a pattern classifier when
only accident-involved data are available, it is easier and more
meaningful to design a classifier to discriminate bhetween the
accident-involved and non-accident populations when both data
sets are available, ’



2. USE OF CAUSAL NETWORKS IN ASSESSING
HIGHWAY SAFETY PROGRAM EFFECTIVENESS

2.1 BACKGROUND

The National Highway Traffic Safety Administration has been con-
ducting the Highway Safety Program Impact Assessment to determine
the impact of highway safety programs on the occurrence of traffic
accidents, injuries, and fatalities. In the development of this
assessment, a conceptual complex Causal Network approach is to be
constructed. A contract for the "Construction of a Comprehensive
Causal Network" is currently being supported by DOT/NHTSA, and

the Center for the Environment & Man, Inc. is the contractor [10].
Their Causal Network will allow functional statements of the pro-
gram output, risk factor, and accident occurrence environment to be
made and it will provide the interactive capability of using actual
accident data for an efficient and effective analysis.

2.2 CONCEPT OF CAUSAL NETWORKS

In the conceptual development of the assessment of highway séfety
program effectiveness, there is recognition that program per-
formance levels are not capable of being related directly to
accident levels in terms of avoiding or retarding growth trends.

A complex network of intervening variables is at work and programs
are being directed toward their alteration and control. These
intervening Variablés are commonly referred to as "'risk factors'
or "factor variables'". Figure 2.1 is a graphical representation
of a conceptual Causal Network. It can be seen that highway safety
program outputs Pl’ P2’ v e, Pk give rise to "activities" (e.g.,

a program decision to lower speed limits may produce more visible
police cars on the roads, advertising campaigns, etc.). These,
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in turn, relate to the risk factors (e.g., '"'speed"” is a risk

factor that may lead to accident involvement). Certain risk

factors are interrelated and lead ultimately to accidents. Thus,
the link from a DOT-sponsored program output to effects on accidents

is an indirect one.

As described above, in the relationships shown by a Causal Network
one might find a particular risk factor affected by a multitude of
program activities, with each activity making its individual

impact at various levels given varying circumstances. Likewise, a
single program output might affect more than one risk factor,

again varying its impact given different conditions. To understand,
diagram, and measure those complex relationships and hence to be

in a position to make definite findings regarding program effective-
ness, these conceptual Causal Networks provide guidance regarding
the appropriate mathematical models to use.

A typical Causal Network, modeling part of the conceptual causal
network, was constructed by the first Contract Technical Manager,
Mr. D. Pastorelle, and others and it is given in Figure 2.2. For
example, Risk Factor 14 (light conditions) is influenced by
Variables 1 (day, date, time) and 2 (weather). Similarly, Risk
Factor 21 (posted speed) is influenced by Variables‘S (urban/rural),
9 (highway type), and 10 (road separation). These are conjectured

functional relationships between two highway risk factors and some
of the exogenous variables (day, date, time, driver age, driver

occupation, ete.).

2.3 USE OF CAUSAL NETWORKS

The main use of a conceptual Causal Network is to ajid in assess-
ment of highway safety program effectiveness. The end result is

not the construction of a given type of comprehensive Causal
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Network, but rather use and simulation of the Causal Network to
evaluate highway safety program effectiveness. Hence, any
description of Causal Networks should state clearly the guidelines
and procedures regarding how it is to be used to assess highway
safety program effectiveness,

To use fully any Causal Network as a guide for modeling purposes,
accident involvement levels (the last layer) have to be defined.
One approach is to use damage costs as indications of the levels
of accident involvement. Another possibility is to define the
levels of accident involvement as the seriousness or severity of
the accident by some evaluation criterion.

Due to the short duration of this project and the lack of an

accident level definition in the data base used in this project,

the last layer in the Causal Network -- accident involvement level -~
was left as further work. The Adaptronics ALN models were synthesized
for all the other layers of the Causal Network (Figure 2.2).



3. HIGHWAY ACCIDENT DATA BASE

3.1 INTRODUCTION

To show the utility of the ALN Modeling technique in this applica-
tion, a highway accident data base was required. The highway
accident data base was supplied by NHTSA. It consisted of a sub-
set of the accident data collected under the "Tri<Level Study of
the Causes of Traffic Accidents' by the Institute for Research in
Public Safety at Indiana University [8]. A detailed description
of this highway accident data base, denoted ITADB (Indiana Tri-
Level Accident Data Base), is presented in Appendix A.

3.2 CHARACTERISTICS OF THE HIGHWAY ACCIDENT DATA BASE

A total of 98 variables of the ITADB was recorded for each of 720
accidents (i.e., observations). (A description of these 98 variables
is given in Table A-1 in Appendix A.) Only 29 of the 98 variables
appear in the Causal Network of Figure 2.2.  However, it was found
that often more than one of the 98 ITADB variables fell within

the definition of a given variable in the 29-variable Causal

Network, so some of the ITADB variables were combined. The relation-
ship between the 29 variables used in the Causal Network and the

98 ITADB variables is presented in Table A-2 of Appendix A.

Variables 7 (Wt/Hp ratio), 10 (road separation), 17 (number of
occupants), and 20 (traffic controls) of the Causal Network were

not recorded in the ITADB. '

The 98 ITADB variables were divided into the following five types
of variable:

Type 1 - Informational Variables
Traffic Units, Day of Week, etc.




Type 2 - Environmental Variables
Weather Condition, Condition of Road Surface, etc.

Type 3 - Exogenous Variables
Age, Sex, Marital Status, etc.

Type 4 - Numerical Variables
Speed Limit, Frequency of Driving a Particular Road, etc.

Type 5 - Risk Factor Variables
Recognition Error, Inattention, Position of Car on Road, etc.

3.3 LIMITATIONS OF THE DATA BASE

After Examination of the ITADB, a number of problems was revealed:

® There were missing or unknown variables in some of the
records (observations) - In some of the records, values
were missing. These values were assigned in the following
way. The frequency distribution for the variable under
question was determined using that subset of the 720
observations for which values were available. The
frequency distribution was then used to bias the genera-
tion of a (uniformly distributed) random number. This
value was substituted for the missing value. A different
random number, so generated, was used to substitute for
each missing value of the given variable in the data set.

° Some variables had unbalanced distributions - Unbalanced
distributions of a number of the ITADB variables were
troublesome. For example, ITADB Variable P36 -- 'cross-
flowing traffic'" ~- was cited as a causative accident
factor only 9 times out of the 720 accidents. Usually
more than one of the ITADB "P'" variables composed one
of the "x'" variables, so the value assigned to the X
variable was determined as follows. If any of the P
variables was cited as accident-causative, the corresponding
X variable was also. TFor example, X was defined as
Driver Impairment. The three P vari%gles that relate to
X were Impairment Due to Alcohol, Impairment Due to
Drugs, and Impairment Due to Fatigue. The values of 1
and 2 were used to denote 'mot cited (N/C)" and "cited
(C)", respectively. So, if alcohol, drugs, or fatigue
singly, or in any combination, were cited as a causative
factor (i.e., assigned the value 2), then x5 was coded
as a 2 also; otherwise, it received the value 1 if the
three P variables were all not cited.

3-2



Although this procedure meant that the x variables were
better distributed between the N/C and C values than
were the P variables, there were still some x variables
that had mainly N/C values. 8o, if these variables

were among the set that would serve as candidate inputs
for a model of another variable, an attempt was made to
find the largest subset of the 720 observations for
which all of the input variables and the output variable
would simultaneously have the most balanced distribution.

® The method of coding the value of some variables was
not very appropriate for quantitative modeling purposes -
The third problem with the ITADB was the manner in
which the variables were coded. How does one numerically
code the day of the week, the hour of the day, the
weather conditions, etc.? This is a commonly recurring
problem in a number of fields including highway safety.
The approach used in this project was to assign numerical
values in the most rational manner possible so that all
the variables could be treated as taking on discrete
values for modeling purposes. The procedures used
are described in Appendix C. As an example, those
variables that were either N/C or C as accident-causative
were assigned binary variables, 1 (N/C) or 2(C). The
hour and day variables were each split into two trigono-
metric variables as follows:

Hour -- sin (2wh/24) and cos (2mh/24)

Day -- sin (2nd/7) and cos (2nd/7)

Thus, numerical discontinuities that would otherwise
appear between the 24th and 0Oth hour and the 7th and
1st day were avoided.

In summary, it is emphasized that the ITADB was not designed
originally with the purposes of this project in mind. Instead, it
was the only data base available that could easily and quickly be
transferred from one computer file to another and that, also, rea-
sonably satisfied the needs of this project. Consequently, certain
steps had to be taken in the use of the data base for modeling '
purposes that could raise questions of appropriateness, validity,
etc. Adaptronics is sympathetic to these concerns and had debated
them internally and with NHTSA personnel. The decision was made



to proceed with use of the ITADB because the purpose of this
project was to demonstrate the feasibility of mathematically
modeling and analyzing Causal Networks. In this spirit, and
because of the small time (4 months) and funds allotted to this
project, it to believed that this was a sound decision. Further
work will certainly need to be performed with data bases that are
more closely matched to the needs of model syntheses. The results
of this project can give considerable guidance for such future

efforts.



4, CONSTRUCTION OF HIGHWAY SAFETY PROGRAM.
EFFECTIVENESS MODEL VIA ADAPTIVE LEARNING TECHNIQUES

4.1 ADAPTIVE LEARNING NETWORK (ALN) MODEL

In principle, models that predict risk factors can be either derived

analytically or empirically.

An analytical model is one obtained by '"reasoning from first prin-
ciples." That is, the investigator attempts to interrelate all
pertinent physical laws thought to influence injury. The problem
with the analytical approach to modeling is that many physical
processes are so very complex as to defy reasoning from first
principles. Constructing a mathematical model necessarily requires
a number of approximations about the relationship of one variable
to another. If the guesses are wrong, the model proves to be
inaccurate. Furthermore, the model may become quite cumbersome due
to a large number of coupled equations, so that the computer process-
ing time increases to unacceptable amounts.

Empirical predictive methods involve finding a predictive equation
that best fits the observed experimental data. But, with con-
ventional empirical modeling methods, one still has to know which
interrelationships are important in order to write the general terms
of the equation. And the resultant models, like analytical ones,
are inflexible. If unanticipated changes occur in the process,

the models become obsolete.

A different approach introduced by Adaptronics incorporates ''self-
learning" principles. To construct a self-learning model, the
analyst first decides what variables may be important, but it is not
necessary to consider the effects of the variables upon one another.
What is needed instead is a collection of data that is reasonably
representative of the variety of situations that can occur in the

system being modeled.



The next step is to construct a mathematical network, known as an
Adaptive Learning Network (ALN), which is a nonlinear hypersurface
linking inputs to output. A generalized equation is constructed

to link an output value to each possible pair of input variables.
Special purpose computer programs are used to find the coefficients
(the weights assigned to the variables) for each equation that makes
it best fit the data. Those equations and variables that consistently
produce the smallest prediction errors are determined. Additional
equations are then constructed that examine interactions among

four, eight, or more variables instead of only two. Theée
additional equations result in added layers in the network and are
retained if they can improve the prediction accuracy.

A model in the form of a network that has had its coefficients
determined and has been reduced to the essential variables is
called "adaptively trained." The synthesis of this model has
proceeded directly from examination of an experimental data base
without human intervention; hence the term '"self-learning." To
make certain that the model has indeed discovered for itself the
pertinent physical laws, additional experimental data not used in
the training, or synthesis, phase are introduced to test the
ability of the model to generalize on its prior experience in
dealing with new situations.

4.2 TYPES OF ALN MODELS

In this project, 15 nonlinear ALN models were synthesized to predict
each of the tentative highway risk factors (given in the Causal
Network of Figure 2.2). There were 15 such factors (not counting
the first layer). The resulting ALN models were used in one of two
ways depending on the nature of the dependent (i.e., modeled)
variable.



If the dependent variable was of a '"continuous" nature, such as
vehicle speed, the ALN model was constructed to yield the output

as a continuous variable. However, if the dependent variable

could only assume two values as in N/C (=1) or C (=2), the ALN
model was used as a classifier. In this case, the modeled hyper-
surface partitioned nonlinearly the input data space into two
regions -- one associated with N/C outcomes and the other associated
with C outcomes. So, for example, if a particular input vector

was determined by the model to be on the N/C side of the separating
decision boundary, a value of 1 was output. Most of the 15 models
were of the classifier type due to the characteristics of the ITADB.

4.3 FORM OF ALN MODELS

The methodology associated with ALN synthesis is described more
fully in References [3~8] by Barron and Mucciardi. In summary,
two~input one-output '"elements'" are used to construct an adaptive
learning network. The output of each element, y, is a quadratic

function of its two inputs X4 and xj:

y =w, + wixg o+ wzxj + stixj +¥w4x12 + wssz

All combinations of inputs are considered two-at-a-~time as above.
For given identities of X5 and xj, an optimization algorithm is

used to find the coefficients, w, that yield the smallest error in
fitting y to the values of X and xj in a "fitting" subset of

the data. Those combinations of variables yielding a low error rate
(on an independent '"selection' subset of the data) are then

retained and the rest discarded. Thus, the candidate input list

is pruned to the most informative subset. This produces the first

layer in the ALN.



The outputs of Layer 1 become inputs to Layer 2 and the process is
now repeated. Since each input to Layer 2 is a function of two x's,
we are now considering functions of functions; thus the complexity
of the model increases, but more slowly than its functional power.
Only those combinations from Layer 1 are retained that produce

the greatest improvement in accuracy. Now the outputs from Layer 2
become inputs to Layer 3, and so on.

The training procedure is terminated when it is established that
the addition of further layers would produce an "overfitting"

condition; that is, the model would become so adept at fitting
the data used to train it that it would be unable to generalize

to data not previously seen. Special algorithms are used to detect
and avoid this condition.

An ALN Model thereby assumes the form of a multinomial -- a poly-
nomial in many variables -- of the (automatically) selected inputs.
The extent and type of non-linearities in model structure can be
discovered and implemented during model synthesis. Thus, the

ALN methodology is a powerful tool for use in data modeling
instances where little or no knowledge exists regarding the func-
tional relationship of dependent to independent variables,

4.4 TFOUR APPROACHES TO MODEL SYNTHESIS

In consultation with the NHTSA Contract Technical Manager, four
approaches to model synthesis were devised. The approaches differed
only in which variables were used as the independent variable

inputs when constructing a model for a particular dependent
variable.



Approach Variables Used as Model Inputs

I Those that had a direct link to the
dependeunt variable in the conjectured
Causal Network.

II Only those that appeared in the immediately
preceding layer.
ITI Those that appeared in any of the previous
layers.
IV Same as III, plus those that appeared in

the same layer as the dependent variable.

All four approaches could not be evaluated due to time and cost

considerations. Approach IV was selected because it was the most
inclusive.

The 15 risk factof models were therefore constructed in the following
way. First, the dependent variable was identified. Second, the
candidate independent (i.e., input) variables were, via Approach
IV, all those in the same layer and any preceding layers of the
Causal Network (Figure 2.2). Third, the ALN modeling algorithm was
used to determine automatically: (a) the subset of candidate inputs
most relevant for modeling accurately the dependent variable, (b)
the structure of the model, and (c) the weighting coefficients for
the various terms within the model. Fourth, a fraction of the

data that was not used to synthesize the model was then employed

to establish model accuracy on data not previously seen.

One of the very desirable benefits of the adaptive learning algorithm
in this project was its capacity to discover -- from the data --

the model structure. This meant that the conjectured Causal Network
could be used as a guide to initiate the modeling efforts, but that
another structure was found through use of the algorithm. The final

Causal Network -- "wired" automatically from accident data -- could
then be compared to the original structure to search for causative
links not previously considered or to reinforce already conjectured
links.



5. RESTRUCTURING OF CAUSAL NETWORKS
VIA ALN MODELS

5.1 MODELING RESULTS

ALN models were constructued for each of the variables in the con-
Jjectured Causal Network for Layers 2 through 5. These included
Variable 13 (miles driven during last 12 months) through Variable
29 (improper overtaking), inclusive.

The 15 resultant models are shown in Figures 5.1 through 5.15.

In each figure the inputs that were selected are given as well

as how they interact. The latter result is obtained by tracing

a particular input variable's path through the net. The weighting
coefficients for each element are given at the bottom of each
figure. '

As described in the previous section, all the variables to be
modeled with the exception of 13, 18, 19 and 21 were binary
valued. Hence, the ALN models were trained as classifiers for
these 11 variables. Each of the 11 binary variables was coded
as 1 for '"mot-cited" and 2 as ''cited" as an accident-causative
factor. The ALN's output was interpreted as N/C if it was less
than 1.5 and, C otherwise. Thus, in 11 of 15 cases, the ALN
models were pattern classifiers.

5.2 COMPARISON OF CONJECTURED AND RESTRUCTURED CAUSAL NETWORKS

Using the AIN models, each node in the Causal Network was recon-
structed and compared to the original conjectured structure.
Appendix B shows the reconstruction of the Causal Network using
the ALN models along with the original structure.
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The comparison between the original and restructured network is
given in Table 5.1 for the 15 variables. The 15 dependent variables
are shown as columns, and an open circle is used to denote a link
that was conjectured to exist between a given pair of independent
and dependent variables. An "X" is used to denote those links
that were found by the respective ALN models. A circle with an
"x'" within it denotes agreement between the two procedures. For
example, the first of the 15 dépendent Variablesvwas SEL "miles
driven during last 12 months," shown in column one. Four factors
were conjectured to be predictive of Xq3 ~" (1) driver sex, (2)
driver age, (3) driver occupation, and (4) vehicle age. The ALN
model found that factors (1), (3), and (4) were indeed predictive

of x but not so for factor (2). In addition, another factor,

13
urban/rural, that was not conjectured to link to Xyq Was found to
be relevant. It can be seen that there were cases in which the

agreement was high (e.g., x13), quite different (e.g., x27), and

considerably simpler due to the ALN restructuring process (e.g.,xla).

The computer classification results derived from the ALN models
are summarized in Table 5.2. The data set was divided into three
subsets: Fitting, Selection, and Evaluation. The Fitting set
was used to train the adaptive learning network, the Selection
set for selecting the best subset of independent variables, and
the Evaluation set to test the performance of the ALN model.

The best results were obtained for dependent Variable 16 (driver
impairment), which was 90 percent accurate for the fitting, 93
percent accurate for selection, and 95 percent accurate for evalua-
tion. The worse evaluation results were for dependent Variable 26
(followed too closely), which was only 42 percent accurate in

classification.
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TABLE 5.2

ALN CLASSIFICATION RESULTS

Variable Number and
Variable Identification

22
23
24
25
26

27

29

Light Condition

Road Surface

Driver Impairment
Vehicle Speed

Vision Obscured
Driver Distracted
Drove Left of Center
Followed Too Closely
Failure to Yield/Stop
Improper Turn

ImproperVOVertaking

Classification Results

In Percentage

Fitting
81
89
90

- 70
62
55
66
63
59
57

76

5-19

Selection
86
93
93
75
54
58
66
55
63
50

69

Evaluation

79
921
95
64
46
52
-85
42
56
51

71



By examining closely the data set, it can be seen why the perform-
ance of the ALN model was poor on Variable 26 (tailgating). Out
of the 720 records, 711 of these records had zero value (not cited
as a factor for the accident), and 9 records had other values.
Hence, Variable 26 contained virtually no information in analyzing
the causal network because this variable was not cited at all 99
percent (711/720) of the time.

The remainder of the ALN classification results varied from 50
percent to over 90 percent. The conclusion reached from computer
analysis of the causal network was that the ALN methodology could
indeed be used to assess the highway safety program effectiveness
and to analyze the accident data base quantitatively.

The 1links that were found in the restructured Causal Network can
be examined by highway safety planners to assess the effects of
past and future actions.

5.3 EXAMPLE OF RESTRUCTURED CAUSAL NETWORK

An example of a restructured Causal Network is shown in Figure 5.16
(which is the same as Figure B.8) for variable xgg, '"vehicle speed."
It can be seen that 14 factors were conjectured originally to
influence vehicle speed. Only two of these —-- driver age and
urban/rural -- were found to be needed. Therefore, this risk

factor in the Causal Network could be predicted using only 2 of

the 14 conjectured links, thereby reducing the data collection
demands. The remainder of the 14 networks are given in Appendix

B, the correspondence between Figure 2.2 and Figures B.1l through
B.15 is summarized in Table 5.1.
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6. EFFECTS OF DRIVER AGE ON ACCIDENT-
CAUSATIVE RISK FACTORS

6.1 RISK FACTORS INFLUENCED BY DRIVER AGE

Driver age is considered to be an important factor in highway
accidents. For this reason it was decided to study this variable
after the 15 models had been created to establish the quantitative
relationship between driver age and the risk factors found to be
influenced by it. This exercise also served to demonstrate the main
objective of the project, which was to establish the utility of the
ALN approach for making quantitative use of Causal Networks linking
highway safety program outputs to accident involvement.

It was found, by ALN synthesis, that seven risk factors were in-
fluenced directly and two risk factors were influenced indirectly
by driver age:

Direct Influence Indirect Influence
Traffic Conditions Posted Speed

Road Use Improper Turn/Failure to
Vehicle Speed Signal ‘

Vision Obstructed
Tailgating

Failure to Yield/Stop
Improper Overtaking

Hence, using the appropriate ALN model, the effect of driver age
on that risk factor could be studied quantitatively.



6.2 QUANTITATIVE EFFECT OF DRIVER AGE

For example, the ALN model for X o0 Vehicle Speed, evolved into
a fairly simple structure of only a one-element network of the
two inputs, driver age (DA) and urban/rural (U/R):

Vehicle Speed = Wy + wlDA + WzU/R + wB(DA)(U/R)

+ w4(DA)2 + WS(U/R)Z

The coefficients Waq to Wy were fpund to be equal to zero, resulting
in Vehicle Speed, VS, as,a linear function of DA and U/R:

Vs = 2.24 - 0.005(DA) - 0.3927(U/R)

Since DA varied from 16 to 82 and U/R was binary, taking on
values 1 or 2, the value of their respective coefficients did not
reflect their relative importance on VS. To find this, each
coefficient needed to be multiplied by the standard deviation of
its associated variable, thus:

AVS  _ / _ _

DA = (-0.005) op, = (-0.005)(14.99) = -0.072
and,

AVS .

A0/R - (-0-397) oU/R = 7(-0.397)(0.483) = -0.192

Therefore, the rate of change of VS with respect to DA (i.e., the
first derivative) was -0.072 and with respect to U/R was -0.192,
on a normalized basis.



In the latter regard, two items were of interest. First, both
partial derivatives were negative, meaning that Vehicle Speed
was found generally to decrease as driver age increased and/or
as the driving was done in an urban setting. (The latter result
followed from the coding of U/R as 1 for rural and 2 for urban;
so as U/R increased, VS decreased, and U/R increased by shifting
from a rural to urban road.)

Second, the ratio of U/R's effect to DA's effect on VS was
0.192/0.072, which is equal to 2.65. Hence, Vehicle Speed was con-
siderably more influenced by the Urban/Rural risk factor than by
the Driver Age exogenous variable.

The contour plot of Figure 6.1 shows the effect of DA and U/R in
graphical form. Thé line represents the locus of points for which
VS = 1.5, that is, the boundary between VS not being cited as an
accident-causative risk factor (VS<1.5) and being cited (VS>1.5).
It can be seen that DA has very little effect in causing VS to
become accident-causative, VS8>1.5, for a given value of U/R.
However, when U/R is rural (U/R=1), VS is more often cited as an
accident-causative factor (VS>1.5),.

Three other contour plots are shown in Figures 6.2 - 6.4 for which
DA effects the respective risk factor in a more complex, nonlinear
manner.

In Figure 6.2, vision obstructed is the dependent variable and
vehicle age, driver age and intersection/non-intersection were the
independent variables. The ALN equation in this case was nonlinear
in the three independent variables. Since there were three inde-
pendent variables and one of them, Variable 12 (intersection/
non-intersection) was binary, the decision boundaries for vision
obstructed were plotted separately for intersections and non-
intersection. As expected, the probability that vision obstructed
was cited as a factor‘for the accident at the intersection was
higher than that at the non-intersection.
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Figure 6.3 is the contour plot for dependent Variable 26
(tailgating); the independent variables were posted speed and
driver age. The results show that for drivers below 30 years of
age and posted speeds less than 55 miles per hour, tailgating
was likely to be cited as a factor contributing to the accident.

A complex and interesting contour plot resulted from the traffic
condition model shown in Figure 6.4. The independent variables
were driver age, day of week, time of day and road straight/
curved. Traffic condition was coded as 1 for heavy, 2 for
moderate, 3 for light and 4 for none. (The contour plots for
traffic conditions are for the mean value of 2.5.) Around the
noon hour, traffic conditions were moderate-heavy -- regardless
of day of the week and driver age. Similarly, during the midnight
hours (hours 21 to 24 and 1 to 4), traffic conditions were none-
light regardless of day of the week and driver age. The impor-
tance of this contour plot is that it gives the analyst a visual
picture of the complex causal relationship between the dependent
variable and the input independent variables.
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APPENDIX A

CHARACTERISTICS OF THE ITADB HIGHWAY
ACCIDENT DATA BASE

A.1 ANALYSIS OF THE INDIANA TRI-LEVEL ACCIDENT DATA BASE

In the Indiana tri-level accident data base subset, a total of 98
variables were recorded for each of 720 accidents. Table A.1 gives
the descriptions of these 98 variables. However, only 29 variables
(exogenous variables, risk factors, etc.) were shown in the Causal
Network (Figure 2.2). The relationships between the 29 Causal
Network variables and the 98 ITADB variables are given in Table A.2.

Variable 7 (wt/HP ratio), 10 (road separation), 17 (number of
occupants), and 20 (traffic controls) of the Causal Network.
were not recorded in the ITADB.

The 98 variables in the ITADB could be divided into the following
five types of variable:

Type 1 - Informational Variables
Traffic Units, Day of Week, etc.

Type 2 ~ Environmental Variables
Weather Condition, Condition of Road Surface, etc.

Type 3 -~ Exogenous Variables
Age, Sex, Marital Status, etc.

Type 4 - Numerical Variables
Speed Limit, Frequency of Driving a Particular Road, etc.

Type 5 ~ Risk Factor Variables
Recognition Error, Inattention, Position of Car on Road, etec.




TABLE A.1
INDIANA TRI-LEVEL ACCIDENT DATA BASE VARIABLES DESCRIPTION

Variable
Number Description

POl Phase No. (2,3,4,5)

P03 Number of Traffic Units (1,2,3,4)

P06 Traffic Unit Number

P08 Day of Week of Accident

P09 Hour of Day of Accident

P10 Condition of Road Surface

P11 Weather Conditions

P12 Urbanization at Accident Location

P13 Highway Classification

P14 Accident Location Classification

P15 Character of Road-Horizontal

P16 Light Conditions

P17 Type of Road Surface

P18 Speed Limit at Accident Location

P19 Sex of Vehicle Driver

P20 Age of Vehicle Driver

P21 Occupation of Vehicle Driver

P22 100's of Miles Driven in Last 12 Months
P23 Age of Vehicle

P24 ) Drugs Taken Within 48 Hours of Accident
P25 Alcohol Consumed Within 24 Hours of Accident
P26 ‘ Traffic Conditions at Time of Accident



Table A.1: (Continued)

Variable
Number Description
p27 Frequent Driving Road
P28 Recognition Errors
P29 - Driver Failed to Observe, Stop for Stop Sign
P30 ' - Recognition Delays -~ Reason Identified
P31 . % Inattention
P32 - Traffic Stopped, Slowing
P33 - Position of Car on Road
P34 -~ Road Features - e.g., curve, lane
P35 ~ Road Signs, Signals
P36 : -~ Cross-Flowing Traffic
P37 . ~ Inattention - Other
P38 * Internal Distraction
P39 . - Event in Car - e.g., Sudden Noise
P40 - Radio, Tape Adjustment
P41l -~ Window Adjustment
P42 - Conversation with Passenger
‘P43 -~ Internal Distraction - Other
P44 *  External Distraction
P45 - Other Traffic
P46 -~ Driver - Selected Outside Activity
P47 ' : - Activity of Interest Outside Vehicle
P48 - Sudden Event Qutside Vehicle
P49 . - . External Distraction - Other
P50 . * Improper Lookout
P51 ~ Pulling Out from Parking Space
P52 - Entering Traffic from Street, Alley
P53 -~ Prior to Changing Lanes, Passing
PS4 ~ Improper Lookout -~ Other

P55 * Perception Delays -~ Other, Unknown

P56 - Traffic Stopped, Slowing

P57 - Position of Car on Road

P58 - Road Features - e.g., Curve, Lane
P59 - Road Signs, Signals

P60 - Cross-Flowing Traffic

P61 -~ Perception Delays ~ Other

P62 Comprehension, Reaction Delays

P63 - Delayed Comprehension

P64 . = Delayed Reaction

A-4



"Table AL1:

Variable
Nuwher

P65
P 6
D7
P68
P69
P70

P71
P72
P73
P74
P75
P76
P77

P78

bP79
P80
P81
p82
P83

(Continued)

Description

Improper Maneuver

—

Turned From Wrong Lane

Drove in Wrong Lane for Direction
Drove in Wrong Direction of Travel
Passed at Improper Location
Improper Maneuver -~ Other

Improper Driving Technique

Cresting Hills - Driving in Center Road
Breaking Too Late, Inappropriately
Stopping Too Far Out in Intersection
Driving Too Close to Center Line, Edge
Slowed Too Rapidly

Improper Driving Technique - Other

Excessive Speed

For Road Design - Regardless of Traffic
In Light of Traffic, Pedestrians

In Light of Weather Conditions
Combination of Design, Traffic, Weather
Excessive Speed - Other

Tailgating

Inadequate Signal

Failure to Signal for Turn
Failure to Use Horn to Wara
Inadequate Siznal - Other

Alcohol Impairment

Other Drug Impairment

Fatigue



TABLE A.1: (Continued)

Variable

Number Description

P92 View Obstructions

P93 - Hillecrests, Dips, etc.

Po4 - Roadside Embankments, Escarpments
P95 ~ Roadside Structures and Growth
P96 - Stopped Traffic

P97 - Parked Traffic

P98 - View Obstructions - Other



TABLE A.2

RELATIONSHIP BETWEEN CAUSAL NETWORK VARTABLES

AND INDIANA DATA BASE- VARIABLES

("ausal Network

Variable
Number Related Variables from Indiana Data Base
1 P08, P09
2 P11
3 P19
4 P20
5 P21
6 P23
7 -
8 P12
‘9 P13
10 -
11 P15
12 P14
13 P22
14 P16
15 P10
16 P89, P90, P91
17 -
18 P26
19 P27
20 -
| 21 P18
22 p78, P79, P80, P81, P82, P83
23 P92, P93, P94, P95, P96, P97, P98
24 P30, P31, P38, P44, P50, P55
25 P33, P57, P67, P68, P72, P75
26 P84
27 P29, P36, P51, P52, P60
28 P66, P85
29 P53, P69




The above five variable types were not mutually exclusive. TFor

instance, the age variable was an exogenous variable (Type 3) as
well as a numerical variable (Type 4). A partitioning of the 98
variables of the ITADB into the five variable types is shown in

Table A.3.

Upon examination of the ITADB, a number of problems was revealed:

(i) missing or unknown variables, (ii) unbalanced distributions
of variables, and (iii) method of coding variables.

If the variable was missing or unknown, one of the two following
methods could have been used to assign the missing value:

(I) Sample Average Method - The missing variable could

have been estimated by the sample average from those
records or observations similar to the missing one.

(II) Monte Carlo Method - The missing variable could have

been replaced by the outcome of a random experiment
whose probability distribution was the frequency of
occurrence of this variable in the data base.

The Monte Carlo Method was used in this investigation.

In the simulation of the Caﬁsal Network by the ALN modeling approach,
the values of variables Types 1, 3, and 4 were used directly. The
Type 2 (environmental) variables and the Type 5 (iisk factor)
variables were modified prior to the simulations as follows:

(I) No Transformation - The value of the variable as coded
in the ITADB was used.




TABLE A.3
TYPES OF VARIABLE IN INDIANA DATA BASE

Type

o

Variables Description

P01 to P09 Informational -Variables
P10 to P17 Environmental Variables
P19, P21 Exogenous Variables
P18, P22, P23, P27 Numerical Variables
P28 to P98 ' Risk Factor Variables




For example, variable P11 (weather condition) in the ITADB was
coded as "1" for clear, "2" for rain, "3" for snow, "4" for fog,
and "8" for other. The same coding was used in the highway'

accident data in this study when no transformation was used.

(II) Counting Method - This method set the value of the
variable equal to one plus the number of cited ITADB
variables that were related to this variable (Table A.2).

The counting method was chosen to code variables 22 to 25 and 27
to 29 in this study because of the small data base in ITADB and
“unbalanced distributed variables. Variable 27 (failure to yield/
stop) was related to variable P36 (cross-flowing traffic), etc.
P36 is the variable related to the ITADB and indicated by the
prefix P. P36 was not cited 711 times and cited only 9 times as
a factor for the accident in the ITADB. Hence, this variable P36
was highly unbalanced.

The complete summary of the ITADB is given in Table A.4. Column 1
is the variable number related to the Causal Network and €olumn 3
is the corresponding variable in ITADB. The number of possibly
different values a particular variable could achieve is given

in Column 5. The frequency of missing values is listed in

Column 6.

A.2 TYPE OF CODING FOR THE HIGHWAY DATA BASE USED IN THIS STUDY

Variable 1 - Day and Time: Day and Time were replaced
by the following four variables to avoid discontinuities
between the seventh and first days and between 2400 and
0001 hours, respectively:




Variable

je>]

10

Deseription

9
=1n (%;duy)

Weather

Driver Sex
Driver Age

Driver
Occupation

Vehicle Age

2n

cos 7 day)
Urban/Rural

Highway Type

sin (%%Lime)

Related
Variables
From IDB Description
P08 Day of the Week
P11 Weather Con-
ditions
P19 Driver Sex
P20 Driver Age
P21 Occupation
P23
PO8 Day
P12 Urban/Rural
P13 Highway Type
P09 Time of Day

A-11

Number of
Different

__Values

7

j&)

Frequency
of Missing
Values

37

60
64

69

Frequency

Values ot Values
1 Mon 06
2 Tue 120
3 Wed 129
4 Thur 111
5 Fri 106
6 Sat 73
7 Sun 64
1 clear 020
2 rain 135
3 snow 18
4 fog 1
8 other 9
1 male 130
2 female 235
See attached table
1 farmer 2
2 laborer 81
3 semi-skilled 62
4 skilled 102
5 white-collar 323
6 professional 112
7 student 178
8 housewife 43
9 other 28
0 16
1 7}
2 73
3 72
4 56
5 76
6 56
7 52
8 18
9 16
10 28
11 19
12 11
13 8
14 5
15 1
16 2
17 1
19 1
20 3
21 1
23 2
--Same as Variable 1--
0 rural 229
1 urban 167
0 county.,city 509
1 state 130
1 am 6
2 12
3 3
4 1
5 3
8 7
7 1
3 L0
9 15
10 e
11 13
12 noon 52
13 1 pm 88
11 I
15 G4
16 1044
17 94
18 51
19 B
20 32
21 81
22 11
23 11 pm 15
24 midnight 0



Table A.4 - (Continued)

Variable
 Number

1

12

13

14

15

16

17
18

19

21

Related
Variables
Description From IDB Description
Road Straight P15 Road Straight
or Curved or Curved
Intersection or
Non Intersection P14 Location
Classification
Miles driven - P22 Miles driven-
last 12 months last 12 mo,
Light Conditions P16 Light Condition
Road Surface P10 Road Surface
Driver Impair- P89 Due to alcohol
ment
P90 Due to Drugs
POl Due to Fatigue
27, . N
cos (Eztlme) P09 Time of Day
Traffic P28 Traffic Condition
Road Use P27 Frequency
Driving Road
Posted Speed P18 Speed Limit
Vehicle Speed- P78 Excessive
Speed too fast Speed
P79 For Road Design,
not traffic
P80 In Light
Traffic,
Pedestrians
P81 In Light of

Weather Cond.

Number of Frequency
Different of Missing Frequency
Values Values Values of Valuces
2 44 1 straight 556
2 curved 109
6 22 1 intersection
roadway 342
2 culvert int. 1
3 non road 92
4 RR Crossing 2
5 bridge over-
pass 1
8 other 260
59 134 ~-See Attached Table -~
3 37 1 day 556
2 dark 110
3 dawn or dusk 17
4 35 1 dry 487
2 wet 166
3 snow,lice 28
8 other 4
4 0 0 N/C 596
10 Cas-Pos. 11
20 Cas-Prob. 11
30 Cas-Certain 2
4 0 0 703
10 9
20 31
30 2
4 0 703
10 10
20 6
30 1
24 21 --Same as Variable 10--
5 28 1 heavy 62
2 moderate 77
3 light 89
4 none o7
8 could not 367
7 72 1 daily 311
2 2/week 108
3 1/week 60
4 2/mo. 25
5 1/mo. 29
6 seldom 85
7 first time 30
10 154 1 20 mph 35
2 25 mph 3
3 30 mph 344
4 35 mph 47
5 40 mph 21
6 45 mph 70
7 50 mph 17
8 55 mph 13
10 65 mph 12
11 other 2
5] 0 8] 636
2 4
10 14
20 33
30 33
5 0 0] 870
2 4
10 7
20 14
30 25
3 0 0 715
10 2
30 3
4 0 4] 705
10 3
20 11
30 1



Table A.4 - (Continued)
Vaviable
Number Leseription

0o

Cont inued

20 Vision Obscured

24 Driver Dis-
tracted, In-
attentive

bDrove lLeft
of Center

o
o

Related
Variables
From IDB

Description

P82

P83

P92

P93

P94

P95

P96

PY7

Pos

P30

P31

P38

P44

PSSO

P33

Comb. Design,
Traffic and
Weather

Other

View Obstruc-
tion

Hillcrests,
dips, etc.

Roadside Em-
bankments,etc.

Roadside Struc-
tures &
Growth

Stopped
Traffic

Parked
Traffic

Other View
Obstructions

Recognition
Delay-Reason
Indent.

Inattention

Internal
Distraction

Externatl
Distraction

Improper
Lookout

Perception
Delays - other
unknown

Position of
Car on Road

Position of
Car on Road
Drove in Wrong
Lane Tor
Pirection

Number of

Ditferont
Valies

4

Frequency
of Missing
Values

0

30

10
20
30

20
30

10

30
0

L0
20
30

10
20

10

30

Freguenes

ol

[N

3

S it ®

IS

703

[N

26

[SI)



Table A.1 - (Continued)

Related Number of Frequency
Variable Variables Different of Missing Freguency
Numboer Doseription Trom IDB_ Desicription _Values Values Valuos of Values
23
(Continucd) P66 Turned From 4 0 0 717
Wrong Direction 10 1
of Travel 20 1
., 30 1
P72 Cresting Hills- 4 0 0 712
Driving in 10 1
Cepter of Road 20 4
30 3
P75 Driving to 3 0 0 716
Close Center 10 1
Line, Edge 20 3
26 Followed too
Closely P84 Tailgating 4 Q Q 711
10 4
20 4
30 1
27 Failure to P29 Driver Fail obs. 4 0 0 689
Yield/Stop or Stop for Stop 10 3
Sign 20 2
30 26
P36 Cross-Flowing 4 0 0 710
Traffie 10 2
20 3
30 5
P51 Pulling Out from 3 0 0 714
Parking Space 20 1
30 5
P52 Entering Traffic 4 0 0 G649
from Street, 10 1
Ally 20 19
30 51
P60 Cross~Flowing 4 Q 0 712
Tratfic i0 2
20 3
30 3
28 Improper Turn, P66 Turned From 3 0 0 710
Failure to Wrong Lane 10 1
Signal 30 [¢]
P85 Inadequate 5 0 9] 687
Signal 1 1
10 20
20 10
30 2
29 Improper P53 Prior to Changing 3 0 o] 710
Overtaking Lanes,Passing 20 1
30 9
P69 Passed at Im- 3 Q [} 713
proper Location 20 2
30 3
Variable 4 - Driver Age Frequency Variable 13 - Miles Driven Last 12 Months
Ape I'requency Age Frequency  Age Frequency Miles Frequency Miles Frequency Miles Frequency
16 21 34 4 52 10 100 2 7,500 3 22,500 1
17 35 35 7 53 7 200 2 8,000 21 23,000 k]
18 38 16 9 54 5 500 4 9,000 10 24,000 3
19 49 37 6 55 5 600 1 9,500 2 25,000 25
20 YR 38 8 56 2 1,000 11 10,000 102 27,500 1
21 54 39 6 57 1 1,200 4 10,500 2 29,000 1
22 11 40 7 59 4 1,500 2 11,000 9 30,000 17
an 23 41 10 63 1 1,800 1 12,000 55 35,000 7
24 29 42 6 64 4 2,000 12 12,500 2 38,000 1
25 27 43 4 65 8 2,500 3 13,000 12 40,000 7
26 21 44 6 66 3 3,000 12 13,500 1 45,000 1
27 27 45 9 87 1 3,500 3 14,000 9 50,000 8
28 16 46 [¢] 68 2 4,000 12 15,000 68 65,000 1
29 11 47 4 69 3 4,500 1 16,000 6 70,000 1
i 7 48 10 71 3 5,000 34 17,000 3 75,000 L
3 11 49 4 74 2 5,500 1 17,500 7 80,000 1
12 1n 50 5 82 1 6,000 18 18,000 3 82,000 1
i 12 51 4 6,500 1 18,000 1 100,000 -4
7,000 13 20,000 44 127,000 1
7,200 1 22,000 2
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sin (%} Day) = Variable 1
27 _ ,
CcoSs (17 Day) = Variable 7

it

sin (55 Time) Variable 10

cQos (55 Time) Variable 17

The values of Day were 1 (Monday), 2 (Tuesday), 3 (Wednesday.
, 7 (Sunday). The values of Time were 1 (One A.M.

2, 3, ..., 12 (Noon), ..., 24 (Midnight). (Note that

variables 7, 10, and 17 in the conjectured Causal Network had

no corresponding variables in ITADB. Hence these variable

number positions were used as shown in ihe above equations.)

Variable 2 - Weather: Coded as binary -- 1 for clear and
2 for not clear.

Variable 5 - Driver Occupation: Replaced by 9 binary
variables, numbered 30 to 38. Variable 30 took on a value
of 1 for non-farmer and 2 for farmer. Variable 31 took

on a value of 1 for non-laborer and 2 for laborer, etc.

Variable 8 - Urban/Rural: Coded as 1 for rural and 2 for
urban.

Variable 9 - Highway Type: Coded as 1 for county/city and
2 for state.

Variable 12 - Intersection or Non-Intersection: Coded .as
1" for intersection or non-road, and 2 for culvert inter-
section, railroad crossing, bridge overpass, or other.

Variable 13 - Miles Driven Last 12 Months: Coded in units
of 100 miles driven in the past 12 months. Any value
greater than 500 units was coded as 600; only ten records
out of 720 had more than 50,000 miles driven in the

last 12 months.

Variable 14 -~ Light Conditions: Coded as 1 for day and
2 for dawn, dusk, or dark. =
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Varibale 15 ~ Road Surface: Coded as 1 for dry road
surface and 2 for wet, snow, ice, or other adverse
conditions.

Variable 18 - Traffic: (Coded as 1 for heavy, 2 for moderate,
3 for light, and 4 for none. When the value of this
variable was equal to 8, meaning it could not be determined,
this variable was changed to be interpreted as “"unknown"
(i.e., its value was generated by the Monte Carlo Method).

Variable 16 - Driver Impairment: Coded as 1 plus the number
of cited ITADB "P" variables related to this variable.

Variables 22 to 25 and 27 to 29: Coded as 1 plus the number
of cited "P" variables related to these variable numbers.

Variable 26 - Followed Too Closely: Coded as 1 for not cited,
and 2 for cited,

The coding of the accident data is summarized in Table A.5.

This accident data baée was used to simulate the Causal Network

in analyzing highway safety program effectiveness using the ALN
modeling approach. hepresentative computer results were discussed

in Section 5.
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TABLE A-5

ACCIDENT DATA BASE FOR ALN MODELING

Variable
Number Description

1 sin(%;day)

2 Weather

3 Driver Sex

4 Driver Age

) Driver Occupation
Replaced by Variables
30 to 38

6 Vehicle Age

7 cos(%;day)

8 Urban/Rural

9 Highway Type

- . 2m, .

1C 81n(§Zt1me)

11 Road Straight or Curved

12 Intersection or
Non-Intersection

13 Miles driven-
last 12 months

14 liight Conditions

Frequency

Values of Values
1 Mon 96
2 Tue 120
3 Wed 129
4 Thurs 111
5 Fri 106
6 Sat 73
7 Sun 64
1 Clear 520
2 Other 153

~--Same as before --

--Same as before --

—=Same as before --
Same as Variable 1

1 rural 229
2 urban 467

1 County,City 564
2 State 130

——-Same as before --
-~Same as before --
1 Intersection 434

2 Non-inter- 264
section

Same as before cxcept

60,000 10
1 day h56
2 other 127



TABLE A.5 (continued)

Variable
Number Description
15 Road Surface
16 Driver Impairment
Due to Alcohol
Due to Drugs
Due to Fatigue
2T, .
17 cos(gztlme)
18 Traffic
19 Road Use
21 Posted Speed
22 Vehicle Speed -

Speed too Fast
Excessive Speed

For Road Design, not
traffic

In Light Traffic,
pedestrians

In Light of Weather
Condition

Comb. Design, Traffic
and Weather

Other

Frequency
of Values

Values

1 dry 487
2 other 198
1 N/C 696
2 Cited 24
1 N/C 703
2 Cited 17
1 N/C 703
2 Cited 17

~~-Same as before--

1 heavy 62
2 moderate 77
3 light 89
4 none 97

~-Same as before--

~-Same as before--

1 N/C 636

2 cited 84
1 N/C 670
2 cited 50
1 N/C 715
2 cited 5
1 N/C 705
2 cited 15
1 N/C 710
2 cited 10
1 N/C 716
2 cited 4




TABILE A.5 (continued)

Variable
Number

Description

238

24

25

Vision Obscured
View Obstruction
Hillcrests, dips, etc.

Roadside Embankments,etc.

Roadwide Structures and
Growth

Stopped Traffic
Parked Traffic

Other View
Obstructions

Driver Distracted,
Inattentive

Recognition Delay-
Reason Indent.

Inattention

Internal Distraction
External Distraction
Improper Lookout

Perception Delays -
other unknown

Drove Left of Center

Position of Car on
Road

Position of Car on
Road

A-19

Values

DH N N NH DR N N

N N N N NN N

N N

N/C
cited
N/C
cited
N/C
cited
N/C
cited
N/C
cited
N/C
cited
N/C
cited

N/C
cited
N/C
cited
N/C
cited
N/C
cited
N/C
cited
N/C
cited

N/C
cited

N/C
cited

Frequency
of Values

614
106

712
8

703
17

678
38

703
17

693
27

711
9

474
246

635

674
46

697
23

615
105

675
45

708
12

719



TABLE A.5 (continued)

Variable
Number Description

25 Drove in Wrong Lane
continued for Direction

Turned From Wrong
Direction of Travel

Cresting Hills-Driving
in Center of Road

Driving too Close
Center Line, Edge
26 Followed too Closely
Tailgating
27 Failure to Yield/Stop

Driver Fail obs. or
Stop for Stop Sign

Cross-Flowing Traffic

Pulling Out from
Parking Space

" Entering Traffic from
Street, Ally

Cross-Flowing Traffic

28 Improper Turn, Failure
to Signal

- Turned from Wrong Lane

Inadequate Signal

29 Improper Overtaking

Prior to Changing
Lanes, Passing

Passed at Improper
Location

A-20

Values

1 N/C
2 cited

N NHE N

DO

R CET SN CR SRR L s

Nt N

N N

Frequency
of Values

718
2

717
3

712
8

716
4

711

689

710
10

714

649
71

712

710
10

687
33

710
10

713
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Cbs(day)
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Highway
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Sin(Time)
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Curved
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Intersection -

FIGURE B.1:
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RESTRUCTURED CAUSAL NETWORK:

Miles Drivén
Last
12 Months

Light
Conditions

Road

Surface

_Driver
Impairment

Traffic
Conditions

Road
Use

L]

Posted
Speed
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BEST COPY

AVAILABLE
Vehicle 12
Speed
Vision 23
Obscured/
Obstructed
Driver 24
Distracted/
Inattentive

(Not Applicable)

«sss Causal Network

VARIABLE 13 - MILES DRIVEN LAST 12 MONTHS

Drove Left
of Center

Followed
Too Closely

Failure to
Yield/Siup

Improper
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To Signal

Improper
Overtaking

27

28

29



BEST COPY

AVLITABLE
S8in(day)
Cos(day)
Driver Light 1 2s
Sex Conditions Drove Left
of Center
Driver Road 13
Age
Surface Vehicle L2 Followed 26
Driver Speed Too Clousely
Occupation _Driver 16
- Impairment
Vibicle Miles Driven |I3 Vision 23 27
Last Obscured/ Failure to
Age 12 Months . Obstructed Yield/Stop
}
Traffic
tro.n or Conditions
Rural Driver 24 Improper 28
Distracted/ Turn; Failuare
Lien Road 9 Inattentive To Signal
ighway
Use
2 Improper 23
Posted Overtaking
Speed
Road i
St(lﬁ;tzgxtl or (Not Applicable)

««e Causal Network

Interscotion
or Non-
Intersection

b ALN

ET O feses Cgusal & ALN
FIGURE B.2: RESTRUCTURED CAUSAL NETWORK: VARIABLE 14 - LIGHT CONDITION:
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VARIABLE 16 - DRIVER IMPAIRMENT
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Driver 24
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== Causal Network

— ALN
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FIGURE B.5: RESTRUCTURED CAUSAL NETWORK: VARIAéLE 18 - TRAFFIC CONDITIONS
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FIGURE B.9: RESTRUCTURED CAUSAL NETWORK : VARIAﬁLE 23 - VISION OBSCURED/OBSTRUCTED
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FIGURE B.15: RESTRUCTURED CAUSAL I\{ETWORK: VARIABLE 29 - IMPROPER OVERTAKING
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APPENDIX C

SYNTHESIS OF A PATTERN CLASSIFIER VIA
MAHALANOBIS DISTANCE FUNCTION

One distinct characteristic of the highway accident data base was
that data were primarily available from only one class, i.e.,

accident-involved driver population. There were no data available

for the non-accident driver population. This section describes
details for synthesizing a pattern classifier to discriminate

between non-accident and accident-involved populations in such a
situation.

The synthesis of a pattern classifier system to discriminate
between the accident-involved driver population and non-accident
driver population with only the accident-involved data available
could be accomplished in the following way. Let X denote the input
variable vector of N-dimensions which will be used to predict
whether the observation is from an accident-involved population

or not. X is a column vector. The transpose of X is the row
vector Xt:

t -
X = [Xl’ Koy ooy xN]

where X4 can be the driver sex, Xq the driver occupation, Xq the
driver age, Xy driver impairment, etc. Note that upper case

letters denote a vector, whereas the components of the vector are
given in lower case letters. Let {Xl, Xgr woos XNT} be the set of
observations, or training samples, that is available for synthesizing
the pattern classifier. These training samples are all from the

accident-involved driver population only.



Let U be the sample mean vector and C the covariance matrix for

the accident-involved driver population:

1 N
U = 5 I X
T i=1
N
C = I g (X,-U)(X,-U)"T
Np-1 ij=1 & i

For any unknown input sample X, the Mahalanobis distance can be
computed:

4 (V) = (x-0)% ¢ I(v-v)
We can construct the following pattern classifier:

Mahalanobis Distance-?attern Classifier

A sample X is said-to be from the accident~-involved driver popula-
tion if:

dM(X) < to
where to is a non-negative threshold.

The boundary of this region, dM(Y) = to, defines a hyper-ellipsoid
in the N-dimensional vector space. The value for the threshold to
can be determined as follows. The sample mean vector U and the
covariance matrix C are estimated using the training set

T = {Xl, X2’ . XNT
the training set T, the "optimum"” threshold value can be obtained

}. By carefully selecting the samples for
that will optimize the performance of the classification system.

Another application of this Mahalanobis distance pattern classifier
was described in Reference [2] by Gonzalez.

C-3



A.2 ESTIMATION OF CONDITIONAL MEMBERSHIP PROBABILITIES VIA ALN

The Adaptive Learning Ne:work (ALN) modeling technique is a ﬁon—
probablistic approach. It is sometimes desirable to compute the
conditional membership probability P(k[X) for class k -- given that
the input (variable) vector is X -- from the output of the ALN
model. The following describes three methods for estimation of the

conditional membership probability.

Let § be the output from the ALN model (the dependent variable).

The input vector X is a column vector and Xt = [Xl’ Xgs «vesy xN]

is a row vector. The input variables Xy, Xg,y «.., Xy are the
independent variables. The objective is to compute the conditional
membership probability P(§ek|X) where 'y € k' means that the output
dependent variable is from class k when the input variable vector

is X. In this project, three methods of estimating the conditional
membership probabilities were defined; these are called the Distance
Method, the Normal Distribution Method, and the Histogram Method.

Distance Method

The Distance Method estimates thé conditional membership probabilities
using the distance function between the predicted value of the de-
pendent variable, 9, and the true values Vq for class 1 and Yo for
class 2. The conditional membership probabilities are given by:

~ 2
P{yel|X} =
d1+d2
~ | dl
P{ve2|X} =
dl+d2
where d, = ly - &i] (i = 2) is the Euclidean distance between

y and V-



Normal Distribution Method

The Normal Distribution Method assumes that the conditional member-
ship probability density functions of the dependent variable §,
given that it is class i, are normally distributed, N(ui, oiz);

i =1, 2; with mean by and variance oiz. The conditional
membership probabilities are given by:

P{§ei[X} = (Zw)_%ci_l exp {- —l§(§-ui)2}
2a.,
i

where, i = 1, 2.

To compute the above conditional membership probabilities, one
needs to estimate the mean Hy and variance 012 for each class 1i.
There are two ways to accomplish this purpose:

(1) Assume that both the mean and variance are unknown
and use the sample data to estimate their values.

Let‘ﬁi and 512 be the estimators respectively, then:
A 1NiA
U = T L V..
i Ni 5=1 ij
N,
i
~2 1 A ~ L2
a’ = L (y:. = uy)
i Ny 1 j=1 13 i
where {§ij’ i=1,2, ..., Ni} are the training samples

for c¢lass i; 1 = 1, 2; and Ni is the number of training

samples for class i.



(2) Assume that the variance is unknown and the mean is

~

TP The unknown variance diz is estimated by its
sample variance:

Ny
2 1 ~ 2
c.” = — I (y.: - y:)
i Ni 1 j=1 ij i

where §ij is defined as before.

Histogram Method

The Histogram Method estimates the conditional probabilities by

their relative frequencies of occurrence based on the training
samples. The histogram of the dependent variable § is computed

as follows. First, the range of the dependent variable is partitioned

into a total of NT intervals. Let § and §min be the maximum and

max
minimum values for the dependent variable. Next, define interval
I. by:
3 y
I, = {y: G-D)2 + vy, Sy <t +y b d=1,2, ..., N
where,
%= pax = Ypin) /N

Then the relative frequency of occurrence, pij’ is defined to be the
number of training samples from class i which fall into the
interval Ij:

Lefl
it

ij #{yeIJIXSi}/Ni;



Hence, the conditional probabilities are given by

y = P{yel |X} = p..;
P{yei|X} {yel[X} Py

i=1, 2.

An Example

Any one of the above methods can be used to compute the conditional
membership probabilities P{yei|X}; i = 1, 2. The following is a
specific example in which these conditional probabilities are
computed.

Let the dependent variable § be the highway accident variable Xom

("drove left.of center'). The independent variables are x
i=1, 2, 3, ..., Xog o where:

i:

Xq = Day, Date, Time

Xg = Weather

Xg = Driver Sex

Xoq4 = Driver Distracted/Inattentive

The dependent variable y is equal to 1 when the cause ('drove left
of center ) is not cited as the reason for the accident, and y is
equal to 2 when '"drove left of center' is cited as the reason for
the accident. The independent variables X1, XZ""Ti Xy4 BTe used
by the ALN model to estimate the dependent variable y. We would
like to compute conditional membership probabilities

P{§eilX}



where class 1 means "drove left of center" is not cited as the
reason for the accident and class 2 means it is cited as the
reason for the accident.

Using the Distance Method to compute these conditional probabilities:

|-y,

P{yet|X} = - —
ty-yq [+ 1y=y,l

| |7y,
P{§e2|X} L

I§"'yll+l§_Y2I

where y is the output of ALN model when the input independent

variables are X915 Koy eney Xoy - For example, if y = Vqis then
. |71-v,|
P{yel|X} = L2 - g,
0+]y3-v5!
P{ye2|X} = oO.

Similarly, if ; = %(y1 + yz), we have
P{yel|X} = P{ye2|X} = 4%.

Thus, we have seen that one can compute the conditional probabilities
using the ALN. The following is another hypothetical example.

Prediction of Accident Probability

Let the dependent variable § be the highway accident indicator such
that § is equal to Yy when no accident has occurred and equal to Yo when it
is an accident. Let the independent variables be Xy oy +oes X909



which include all exogenous variables, risk factor variables, etc.
given in the Causal Network. The ALN modeling will optimally
select the subset of independent variables which is best in pre-
dicting or estimating the dependent variable y, highway accident.

Let X be this subset of independent variables, where X = {xl, X
xk}. Any one of the above three methods can be used to compute the

accident probability.
The accident probability is given by:
P{ye2|X}
where class 2 is for accident, i.e. when § = Vg
Note that in this hypothetical example it has been assumed that

the data base contained samples from both the accident-involved
population and the non-accident-involved population. If the

samples from the non-accident-involved population were not available,

the above method could not be used to compute the conditional
membership probability. However, the Mahalanobis distance pattern
classifier described earlier in this appen&ix can be synthesized
to discriminate between the accident-involved population and the
non-accident-involved population.



