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1 Introduction 
NHTSA has collected crash data since the early 1970s to support its mission to reduce motor vehicle 
crashes, injuries, and deaths on our Nation’s highways. In 2016 NHTSA implemented two new annual 
surveys to improve crash data collection, the Crash Report Sampling System (CRSS) that replaced the 
General Estimates System (NASS-GES), and the Crash Investigation Sampling System (CISS) that 
replaced the Crashworthiness Data System (NASS-CDS).   

Selecting a nationwide simple random sample of police crash reports requires access to all PCRs in the 
Nation. Therefore, it is cost prohibitive to directly select a national simple random sample of PCRs. 
Instead CRSS data was collected under a complex survey design with features such as multistage 
sampling, stratification, and unequal selection probabilities to ensure it was a nationally representative 
sample. However, due to its complex survey design features, CRSS was not a simple random sample. 
Therefore, CRSS case weights were derived corresponding to its complex design features in order to 
produce unbiased and robust estimates.  

As for any probability-based sample, the estimates generated from CRSS data are subject to sampling 
errors. The sampling error is a measure of the variability of an estimator from its mean under repeated 
sample selections. The magnitude of sampling error depends on the study variable, the estimator used, 
and the sample design.  

Failing to consider the complex survey design features in CRSS estimation can bias both point estimates 
and their associated standard error estimates.  

Estimation methods and computer software have been developed to make estimates from complex survey 
data. Specialized procedures for complex survey data analysis, such as SAS PROC SURVEY procedures 
and SUDAAN procedures, can be used in CRSS data analysis along with proper design statements to take 
the complex survey design into account. See Zhang et al., (2018) for more details and examples of CRSS 
data analysis.  

For users who do not have access to specialized software and wish to have a quick assessment of the 
magnitude of the standard errors of CRSS estimates, the generalized variance functions described in this 
report can be used to generate ballpark standard error estimates for a large quantity of estimates. In this 
approach, it is assumed the standard error of a point estimate 𝑋𝑋 can be approximated by a known 
generalized variance function 𝑓𝑓 of 𝑋𝑋 indexed by estimated parameters, say, 𝑎𝑎, 𝑏𝑏, and c:  

𝑆𝑆𝑆𝑆 ≈ 𝑓𝑓(𝑋𝑋; 𝑎𝑎, 𝑏𝑏, 𝑐𝑐) 

The survey statisticians normally provide the estimated parameters and specify the GVF form 
𝑓𝑓(𝑋𝑋; 𝑎𝑎, 𝑏𝑏, 𝑐𝑐). Some GVF may have more or fewer estimated parameters. To have a quick assessment of 
the standard error of 𝑋𝑋, the data user simply first estimates 𝑋𝑋 and then plugs 𝑋𝑋 into 𝑓𝑓(𝑋𝑋; 𝑎𝑎, 𝑏𝑏, 𝑐𝑐) to 
calculate SE.  

To determine the function 𝑓𝑓 and estimate the parameters in 𝑓𝑓, first a group of point estimates (𝑋𝑋’s) and 
their associated variance estimates �𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋)� or standard error estimates (SE’s – normally the square root 
of 𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋) is used) are made from the sample data using specialized software such as SAS PROC 
SURVEY procedures or SUDAAN procedures. These point estimates and their associated standard error 
estimates are then used to identify the GVF form 𝑓𝑓 and estimate the associated parameters through 
regression analysis.  

NHTSA provided GVFs for the GES estimates (see for example, Appendix C of NHTSA’s Traffic Safety 
Facts 2015 [NHTSA, 2017]). Over the years, GES GVF’s function forms have been stable but the 
estimated coefficients have been changing, which indicates the need for the regular updating of the 
coefficients. CRSS is designed independently from GES and has a different PSU formation, sample 
selection method, and weighting procedure, among other differences. Therefore, the CRSS GVF may 
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have different function forms or coefficients. For this reason, NHTSA conducted this study to determine 
the CRSS GVFs.  

In Chapter 2 of this document, we briefly describe the CRSS sample design and weighting procedures 
because these features dictate how the CRSS point estimates and standard errors should be estimated.  

Chapter 3 is an outline of the study. We propose the GVF’s function forms to be considered. We then 
identify the variables, the data files, the estimators, and the variance estimation method to be used in this 
study. Finally, we consider the criteria to compare the GVF models. 

Chapter 4 describes the GVF fitting process, compares the GVFs, and identifies the final GVF model for 
CRSS. After the final GVF model is identified, model coefficients for 2016 – 2019 CRSS (2019 CRSS 
data became available when we were making the final revision of this document) are estimated and GVF 
standard error estimate tables are provided.  

In Chapter 5 we give some examples to show how to use the identified final GVFs to estimate standard 
errors.  
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2 The CRSS Sample Design and Weighting Procedure 

2.1 The CRSS Sample Design 
Unlike the CDS PSU sample was a subsample of GES PSU sample, the CRSS was designed independent 
of other NHTSA surveys. The target population for CRSS was the same as GES: all police-reported 
motor vehicle crashes on trafficways. Because a nationwide direct selection of PCRs requires access to all 
the PCRs in the nation, it was infeasible to select a simple random sample of PCRs. Instead, CRSS PCR 
sample was selected in multiple stages with unequal selection probabilities to produce a nationally 
representative probability sample.  

At the first stage of selection, 3,117 counties in the United States were grouped into 707 Primary 
Sampling Units. A PSU in the CRSS was either a county or a group of counties. U.S. territories, some 
remote counties in Alaska, and small islands of Hawaii were excluded because of the cost and operational 
inefficiency.  

The 707 PSUs in the PSU frame (the collection of all PSUs) were stratified into 50 strata by the four 
Census regions, urban/rural, vehicle miles traveled, total number of crashes, total truck miles traveled, 
and road miles. Each of the 707 PSUs in the frame was assigned a measure of size equal to the 
combination of its estimated nine types of crash counts. There were 101 PSUs selected by a stratified 
probability proportional-to-size sampling method. Then a sequence of sub-samples was selected from the 
101 PSU sample. During this process the strata were collapsed as necessary. This produced a sequence of 
nested PSU samples with decreasing sample sizes selected from the collapsed strata. These nested PSU 
samples allow NHTSA to change the PSU sample size without reselecting the sample in the future. 
Therefore, the final PSU sample was the result of a multiphase sampling, and the PSU sample was 
selected in such a way that the resulting selection probability was still approximately PPS.  

In 2016 there were 60 PSUs selected from 24 PSU strata for CRSS data collection. Because 7 PSUs did 
not cooperate, the CRSS data were collected from 53 PSUs. A PSU level non-response adjustment was 
applied to mitigate the potential non-response bias. In 2017, 6 non-responding PSUs were converted to 
responding PSUs and one replacement PSU was added. Therefore, from 2017 a total of 60 PSUs were 
used for data collection. 

The secondary sampling units were police jurisdictions. Within each selected PSU, PJs were stratified 
into three PJ strata by their estimated measure of size which is a combination of crash counts in six 
categories of interest. The Pareto sampling method (Rosén, 1997) was used to select PJ samples from 
each PJ stratum. The Pareto sampling method produces overlapping samples when a new sample is 
reselected. This reduces the changes to the existing PJ sample if a new PJ sample would need to be 
selected because of PJ frame (the collection of all PJs in the selected PSU) changes. The PJ inclusion 
probability under the Pareto sampling is approximately PPS (Rosén, 1997). In 2016 for example, across 
the 53 responding PSUs, a total of 350 PJs was selected and 337 PJs cooperated. Weight adjustments 
were made to mitigate the potential bias caused by the 13 non-responding PJs. 

The tertiary sampling units were PCRs. The CRSS samplers periodically received PCRs from the selected 
PJs. All new PCRs were sequentially stratified into nine PCR strata in the order they became available. 
These nine PCR strata were formed based on the results of NHTSA’s internal data needs and public data 
needs studies. The PCR stratification was used to over-sample the following important analysis domains 
to ensure enough cases were selected into the sample: 
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• Crashes involving killed or injured pedestrians; 

• Crashes involving killed or injured motorcycle occupants;  

• Crashes involving killed or injured occupants in a late model year passenger vehicle; and 

• Crashes involving killed or severely injured occupants in a non-late-model-year passenger 
vehicle.  

From each PCR stratum, a systematic sampling method was used to select the PCR sample. The sampling 
intervals were determined in such a way that the final weights were approximately equal for all the PCRs 
in the same PCR stratum to reduce the sampling variance for the domain estimates. The target PCR 
sample size was around 50,000 every year.  

2.2 The CRSS Weighting Procedure 
The CRSS sample was the result of probability sampling featuring stratification, clustering, and selection 
with unequal probabilities. Because of these features, the CRSS sample was not a simple random sample 
and users need to use proper weights to produce unbiased and robust estimates. The 2016 CRSS weights 
were created as follows: 

• Calculated the base weights (the inverse of selection probabilities) at all three stages 
(PSU, PJ, and PCR).  

• Adjusted the base weights for non-response at all three stages to correct potential non-
response bias.1 

• Calibrated the PJ and the PCR weights using the PSU level total PCR stratum counts to 
further correct potential non-response bias and coverage bias.  

• Adjusted the weights for duplicates. 
See Zhang, Noh, Subramanian, and Chen (2019) for more detailed information on CRSS sample design 
and weighting process. 

 
  

                                                 
1 Non-responding PCRs were incomplete or non-readable PCRs. Non-responding PJs and PSUs were PJs and PSUs 
refused to cooperate.  
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3 The Outline of CRSS GVF Study 

3.1 GVFs and Fitted Models 
According to Wolter (2007): “Most of the GVFs to be considered are based on the premise that the 
relative variance 𝑉𝑉2 is a decreasing function of the magnitude of the expectation 𝑋𝑋.” Here 𝑉𝑉2 =
𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋) 𝑋𝑋2⁄ . CRSS estimates are mainly domain size estimates, e.g. total number of injury crashes, total 
number of injured pedestrians, etc. To see how Wolter’s premise holds in domain size estimates, we 
consider the following simplified scenario: assuming a simple random sample (without replacement) of 
size n is selected from a population of known size N. Also, let X be the estimated total number of units in 
a domain with a certain characteristic. Let the estimated proportion of the domain size X to the population 
size N be 𝑝𝑝 = 𝑋𝑋 𝑁𝑁⁄ . The estimated sampling variance of 𝑝𝑝 can be written as: 

𝑣𝑣𝑎𝑎𝑉𝑉(𝑝𝑝) = �1 −
𝑛𝑛
𝑁𝑁
�
𝑝𝑝(1 − 𝑝𝑝)
𝑛𝑛 − 1

 

Notice 𝑋𝑋 = 𝑁𝑁𝑝𝑝, hence we have: 

𝑣𝑣𝑎𝑎𝑉𝑉(𝑋𝑋) = 𝑁𝑁2𝑣𝑣𝑎𝑎𝑉𝑉(𝑝𝑝) 

= �1 −
𝑛𝑛
𝑁𝑁
�
𝑁𝑁2𝑝𝑝(1 − 𝑝𝑝)

𝑛𝑛 − 1
 

               = �1 −
𝑛𝑛
𝑁𝑁
�
𝑁𝑁2(𝑝𝑝 − 𝑝𝑝2)

𝑛𝑛 − 1
 

                         = �1 −
𝑛𝑛
𝑁𝑁
�

1
𝑛𝑛 − 1

(𝑁𝑁𝑋𝑋 − 𝑋𝑋2) 

Let 𝑎𝑎 = −�1 − 𝑛𝑛
𝑁𝑁
� 1
𝑛𝑛−1

 and 𝑏𝑏 = �1 − 𝑛𝑛
𝑁𝑁
� 𝑁𝑁
𝑛𝑛−1

, 𝑣𝑣𝑎𝑎𝑉𝑉(𝑋𝑋) can be rewritten as: 

𝑣𝑣𝑎𝑎𝑉𝑉(𝑋𝑋) = 𝑏𝑏𝑋𝑋 + 𝑎𝑎𝑋𝑋2. 
Therefore, 

𝑣𝑣𝑎𝑎𝑉𝑉(𝑋𝑋)
𝑋𝑋2

=
𝑏𝑏
𝑋𝑋

+ 𝑎𝑎 

This indeed leads to Wolter’s premise, 

𝑉𝑉2 = 𝑎𝑎 +
𝑏𝑏
𝑋𝑋

 

In the following we list 9 linear models to be considered in CRSS GVF study and their corresponding 
GVFs. These models are commonly used as GVFs and most of them can be found in Wolter (2007). 
Although as Wolter pointed out “there is very little theoretical justification for any of the models,” the 
goal, however, is clear: to find a GVF that fits the estimates well.  

In practice, data users are mainly interested in standard error estimates instead of variance estimates. 
Therefore, in this study, the GVF is referred to the function to be used to calculate standard error 
estimates 𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋), while the linear model is referred to the linear model to be fitted in order to estimate the 
coefficients in the GVF. We also examine Wolter’s premise - the related relative variance 𝑉𝑉2 =
𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋) 𝑋𝑋2⁄  is a decreasing function of the magnitude of the expectation 𝑋𝑋 - when we consider the GVF 
candidates.  
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Model-1: 𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋) = 𝑎𝑎𝑋𝑋2 + 𝑏𝑏𝑋𝑋 

Dividing both sides of model-1 by 𝑋𝑋2 leads directly to the relative variance: 

𝑉𝑉2 = 𝑎𝑎 +
𝑏𝑏
𝑋𝑋

 

Obviously, the right-hand side is indeed a decreasing function when 𝑋𝑋 increases. Taking square root of 
both sides of model-1 produces the GVF: 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = �𝑎𝑎𝑋𝑋2 + 𝑏𝑏𝑋𝑋 

Model-2: 𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋) = 𝑎𝑎𝑋𝑋2 + 𝑏𝑏𝑋𝑋 + 𝑐𝑐 

Notice model-1 is a special case of model-2. From model-2, 

𝑉𝑉2 = 𝑎𝑎 +
𝑏𝑏
𝑋𝑋

+
𝑐𝑐
𝑋𝑋2

 

This model is Wolter’s (7.2.2). It’s obvious the relative variance is a decreasing function when 𝑋𝑋 
increases. Taking square roots of both sides of model-2 gives the GVF: 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = �𝑎𝑎𝑋𝑋2 + 𝑏𝑏𝑋𝑋 + 𝑐𝑐 

Model-3: 𝑙𝑙𝑛𝑛[𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋)] = 𝑎𝑎 + 𝑏𝑏 ∗ 𝑙𝑙𝑛𝑛(𝑋𝑋) 

Alternatively, the GVF is: 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = 𝑠𝑠𝑎𝑎+𝑏𝑏∗𝑙𝑙𝑛𝑛(𝑋𝑋) 

Notice: 

𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋) = 𝑠𝑠2𝑎𝑎+2𝑏𝑏∗𝑙𝑙𝑛𝑛(𝑋𝑋) 

Multiplying both sides by 𝑋𝑋−2 = 𝑠𝑠−2∗𝑙𝑙𝑛𝑛(𝑋𝑋), the relative variance is: 

𝑉𝑉2 = 𝑠𝑠2𝑎𝑎+2𝑏𝑏∗𝑙𝑙𝑛𝑛(𝑋𝑋)−2∗𝑙𝑙𝑛𝑛(𝑋𝑋) = 𝑠𝑠2𝑎𝑎+2(𝑏𝑏−1)∗𝑙𝑙𝑛𝑛(𝑋𝑋) 

Since 𝑎𝑎 and 𝑏𝑏 can be any real numbers, the right-hand side indeed can be a decreasing function of X. 

Model-4:  𝑙𝑙𝑛𝑛[𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋)] = 𝑎𝑎 + 𝑏𝑏 ∗ 𝑙𝑙𝑛𝑛2(𝑋𝑋) 

From model-4, the GVF is: 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = 𝑠𝑠𝑎𝑎+𝑏𝑏∗𝑙𝑙𝑛𝑛2(𝑋𝑋) 

Notice this is the same as the GES GVF. To obtain the relative variance, notice: 

𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋) = 𝑠𝑠2𝑎𝑎+2𝑏𝑏∗𝑙𝑙𝑛𝑛2(𝑋𝑋) 

Multiplying both sides by 𝑋𝑋−2, the relative variance is: 

𝑉𝑉2 = 𝑠𝑠2𝑎𝑎+2𝑏𝑏∗𝑙𝑙𝑛𝑛2(𝑋𝑋)−2∗𝑙𝑙𝑛𝑛(𝑋𝑋) 

Since 𝑎𝑎 and 𝑏𝑏 can be any real numbers, the right-hand side indeed can be a decreasing function of X.  
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Model-5:  𝑙𝑙𝑛𝑛[𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋)] = 𝑎𝑎 + 𝑏𝑏 ∗ 𝑙𝑙𝑛𝑛(𝑋𝑋) + 𝑐𝑐 ∗ 𝑙𝑙𝑛𝑛2(𝑋𝑋) 

Obviously, both model-3 and model-4 are special cases of model-5. To see the corresponding relative 
variance, notice from model-5 the corresponding GVF is: 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = 𝑠𝑠𝑎𝑎+𝑏𝑏∗𝑙𝑙𝑛𝑛(𝑋𝑋)+𝑐𝑐∗𝑙𝑙𝑛𝑛2(𝑋𝑋) 

Also,  

𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋) = 𝑠𝑠2𝑎𝑎+2𝑏𝑏∗𝑙𝑙𝑛𝑛(𝑋𝑋)+2𝑐𝑐∗𝑙𝑙𝑛𝑛2(𝑋𝑋) 

Therefore,  

𝑉𝑉2 = 𝑠𝑠2𝑎𝑎+2𝑏𝑏∗𝑙𝑙𝑛𝑛(𝑋𝑋)+2𝑐𝑐∗𝑙𝑙𝑛𝑛2(𝑋𝑋)−2∗𝑙𝑙𝑛𝑛(𝑋𝑋) = 𝑠𝑠2𝑎𝑎+(2𝑏𝑏−2)∗𝑙𝑙𝑛𝑛(𝑋𝑋)+2𝑐𝑐∗𝑙𝑙𝑛𝑛2(𝑋𝑋) 

Again, the right-hand side can be a decreasing function of X.  

Model-6: 𝑉𝑉−2 = 𝑎𝑎 + 𝑏𝑏𝑋𝑋 

Model-6 can be rewritten as: 

𝑉𝑉2 = (𝑎𝑎 + 𝑏𝑏𝑋𝑋)−1 

which is Wolter’s (7.2.3). From this equation: 

𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋) =
𝑋𝑋2

𝑎𝑎 + 𝑏𝑏𝑋𝑋
 

Therefore, the GVF is: 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) =
𝑋𝑋

√𝑎𝑎 + 𝑏𝑏𝑋𝑋
 

Model-7: 𝑉𝑉−2 = 𝑎𝑎 + 𝑏𝑏𝑋𝑋 + 𝑐𝑐𝑋𝑋2 

It’s easy to see model-6 is a special case of model-7. Model-7 can be rewritten as: 

𝑉𝑉2 = (𝑎𝑎 + 𝑏𝑏𝑋𝑋 + 𝑐𝑐𝑋𝑋2)−1 

which is Wolter’s (7.2.4). From this equation:  

𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋) =
𝑋𝑋2

𝑎𝑎 + 𝑏𝑏𝑋𝑋 + 𝑐𝑐𝑋𝑋2
 

Therefore, the GVF is: 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) =
𝑋𝑋

√𝑎𝑎 + 𝑏𝑏𝑋𝑋 + 𝑐𝑐𝑋𝑋2
 

Model-8:  𝑙𝑙𝑛𝑛(𝑉𝑉2) = 𝑎𝑎 + 𝑏𝑏 ∗ 𝑙𝑙𝑛𝑛(𝑋𝑋) 

This model is the same as Wolter’s (7.2.5). To see the relative variance, from model-8 we have: 

𝑉𝑉2 = 𝑠𝑠𝑎𝑎+𝑏𝑏∗𝑙𝑙𝑛𝑛(𝑋𝑋) 

The right-hand side can be a decreasing function of 𝑋𝑋. From this relative variance, we can also obtain the 
GVF as the following: 

𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋) = 𝑠𝑠𝑎𝑎+𝑏𝑏∗𝑙𝑙𝑛𝑛(𝑋𝑋)+2∗𝑙𝑙𝑛𝑛(𝑋𝑋) = 𝑠𝑠𝑎𝑎+(𝑏𝑏+2)∗𝑙𝑙𝑛𝑛(𝑋𝑋) 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = 𝑠𝑠(𝑎𝑎 2⁄ )+[(𝑏𝑏+2) 2⁄ ]∗𝑙𝑙𝑛𝑛(𝑋𝑋) 
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Model-9: 𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = 𝑎𝑎 + 𝑏𝑏 ∗ 𝑙𝑙𝑛𝑛(𝑋𝑋) 

From model-9: 

𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋) = 𝑏𝑏2 ∗ 𝑙𝑙𝑛𝑛2(𝑋𝑋) + 2𝑎𝑎𝑏𝑏 ∗ 𝑙𝑙𝑛𝑛(𝑋𝑋) + 𝑎𝑎2 

𝑉𝑉2 = 𝑏𝑏2 ∗
𝑙𝑙𝑛𝑛2(𝑋𝑋)
𝑋𝑋2

+ 2𝑎𝑎𝑏𝑏 ∗
𝑙𝑙𝑛𝑛(𝑋𝑋)
𝑋𝑋2

+
𝑎𝑎2

𝑋𝑋2 𝑋𝑋→∞
�⎯⎯� 0 

The GVF is model-9 itself. 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = 𝑎𝑎 + 𝑏𝑏 ∗ 𝑙𝑙𝑛𝑛(𝑋𝑋) 

Like GES, the CRSS data have a hierarchical structure: information is collected from crashes, vehicles 
involved in the crashes, and the persons involved with the vehicles. The GES GVFs were fitted separately 
for crash, vehicle, and person estimates and showed different coefficient estimates. For this reason, we 
also fitted model 1 to 9 mentioned above at three different levels: crash, vehicle, and persons.  

Sampling variance is the function of the population, the sample design, the point and the variance 
estimators used, and the variable itself. A GVF fitted to a more specific group of estimates (i.e. under the 
same design, the same type of estimators defined on the same population) may give better estimated 
standard errors but it covers a limited range of estimates. On the other hand, a GVF fitted to a more 
general group of estimates (i.e. under different sample designs such as GES and CRSS, different type of 
estimators defined on different populations) may cover a wider range of estimates but then there may be 
more large differences between the GVF estimates and the estimates calculated from specialized software.  

3.2 Variables Considered  
Table 1 lists all variables used in the GES GVF model fitting. We included all these variables used in 
GES GVF for CRSS GVF model fitting.  

Accident Vehicle Person 

Crash Severity (Property Damage/Injury)* - 
INJSEV_IM 

Body Type*- BDYTYP_IM Injury severity* - INJSEV_IM 

Crash Type (Single/Multi vehicle) – 
VE_FORMS 

Initial Contact Point*-
IMPACT1_IM 

Person Type – PER_TYP 

Month-MONTH Speed Limit* - CSPD_LIM Age* - AGE_IM 

Time of Day* - HOUR_IM Special Use Vehicle - 
SPEC_USE 

Sex* - SEX_IM 

Day of the Week*- WKDY_IM Most Harmful Event* - 
VEVENT_IM 

Passenger Ejected* - EJECT_IM 

Weather Condition* - WEATHR_IM Rollover - ROLLOVER Correct Restrain Use – 
REST_USE 

Light Condition* - LGTCON_IM Fire Occurrence – FIRE_EXP Incorrect Restrain Use – 
REST_MIS 

Relation to Roadway – REL_ROAD Pre-Event Movement* - 
PCRASH1_IM 

Seating Position* - SEAT_IM 

Relation with Junction* – RELJCT2_IM  Air Bag Deployed – AIR_BAG 

Manner of Collision*-MANCOL_IM  
Non-Motorist Location - 
LOCATION 

* - Denotes imputed variable 

Table 1: Variables Used for GES GVF Model Fitting 
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In GES GVF model fitting, all variables were treated as categorical variables. And all estimates are the 
category sub-population size estimates. Numerical variables such as the number of vehicles involved in 
the crash or the number of persons in the vehicle were not considered in GES GVF model fitting. For 
these numerical variables, the related estimates were population or sub-population total estimates. To 
extend the CRSS GVF application to total estimates, we added the following numerical variables to the 
CRSS GVF model fitting:  

Accident Vehicle 
Number of Persons Not in Motor Vehicles – PEDS Number of Occupants - NUMOCCS 
Number of Persons Not in Motor Vehicles in Transport- 
PERNOTMVIT 

Imputed Number Injured in Vehicle – NUMINJ_IM 

Number of Total Motor Vehicles – VE_TOTAL Number of Lanes in Roadway– VNUM_LAN 
Number of Total Motor Vehicles in Transport – 
VE_FORMS 

 

Number of Parked Vehicles – PVH_INVL  
Number of Persons in Motor Vehicles in Transport – 
PERMVIT 

 

Imputed Number of Injured in Crash* – NO_INJ_IM  
* - Denotes imputed variable 

Therefore, three types of estimates were used in CRSS GVF model fitting: categorical variable estimates, 
numerical variable estimates, and combined (or mixed) estimates. Person level only had categorical 
variable estimates. 

3.3 Variance Estimation Method  
Because of the complex sample design, jackknife variance estimation method was used to estimate the 
variances in this study.  

The jackknife variance estimation method is a replication method. By this method, one PSU is deleted 
from the original sample so the remaining sample becomes a sub-sample. The analysis weights in the sub-
sample are adjusted to compensate the deleted PSU. Then the estimate under consideration is calculated 
using the sub-sample and the adjusted analysis weights. This process is replicated over all PSUs to obtain 
a group of estimates calculated from the sub-samples. Then the variation of these sub-sample estimates 
around the full sample estimate is calculated as the estimated variance of the estimate. See Wolter (2007) 
for a more detailed description. Zhang et al. (2018) provided examples on CRSS data analysis using the 
jackknife variance estimation method.  

3.4 Point Estimators Considered 
As we mentioned above, two types of estimators were considered in the CRSS GVF model fitting. The 
first type was the sub-population size estimator. If categorical variable 𝑋𝑋 has 𝑘𝑘 possible categories: 
1, 2, … ,𝑘𝑘 (7 days of the week for example), the number of cases in category 𝑗𝑗 (Sunday for example) in the 
population can be estimated by: 

  

Table 2: Numerical Variables Added to CRSS GVF Model Fitting 
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𝑁𝑁�𝑗𝑗 = � 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝑠𝑠𝑗𝑗

 

Here 𝑖𝑖 refers to a sampled unit, 𝑠𝑠𝑗𝑗 is the set of sampled units in category 𝑗𝑗 (Sunday crashes for example), 
𝑤𝑤𝑖𝑖 is the weight of unit 𝑖𝑖. 𝑁𝑁�𝑗𝑗 is the estimate of a sub-population size – the estimated total number of 
category 𝑗𝑗 units in the population. GES GVF model fitting only considered this type of estimates.  

The second type estimator considered in the CRSS GVF study was for the total estimates of numerical 
variables. Let 𝑋𝑋 be a numeric variable (number of vehicles involved in a crash for example). The 
population total estimate of a numeric variable 𝑋𝑋 is estimated by: 

𝑋𝑋� = � 𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖
𝑖𝑖∈𝑠𝑠

 

Here 𝑋𝑋𝑖𝑖 is the numerical value of 𝑋𝑋 for unit 𝑖𝑖. For a sub-population 𝑑𝑑 (Sunday for example), the 
corresponding sub-population total estimate is: 

𝑋𝑋�𝑑𝑑 = � 𝑤𝑤𝑖𝑖𝑋𝑋𝑖𝑖
𝑖𝑖∈𝑠𝑠∩𝑑𝑑

 

Here 𝑋𝑋�𝑑𝑑 is the total estimate of numerical variable 𝑋𝑋 for sub-population 𝑑𝑑 (total number of vehicles 
involved in Sunday crashes, for example). 

𝑁𝑁�𝑗𝑗 can be viewed as a special case of 𝑋𝑋�𝑑𝑑 where 𝑑𝑑 is the category 𝑗𝑗, 𝑋𝑋𝑖𝑖 = 1 when 𝑖𝑖 ∈ 𝑠𝑠 ∩ 𝑑𝑑 and 𝑋𝑋𝑖𝑖 = 0 
otherwise. In this sense, CRSS GVF covered a wider range of estimates than GES GVF.  

3.5 Data  
We had 3 years of CRSS data at the time the GVF models were fitted: 2016-2018. Because of PSU non-
response, 2016 CRSS had 53 PSUs. 2017 and 2018 CRSS had 60 PSUs. We used 2016 and 2017 CRSS 
files separately to make point estimates (𝑋𝑋𝑖𝑖) and variance estimates (𝑣𝑣𝑎𝑎𝑉𝑉(𝑋𝑋𝑖𝑖)). Then we combined these 
estimates of 𝑋𝑋𝑖𝑖 and 𝑣𝑣𝑎𝑎𝑉𝑉(𝑋𝑋𝑖𝑖)) to fit all proposed models. After we estimated the model coefficients and 
goodness of fit statistics, we identified a few plausible models. We then used 2018 CRSS data to compare 
the plausible models and recommended the final model. 

3.6 Model Comparison Method  
After we fitted model 1-9 using 2016 and 2017 CRSS estimates, we used the goodness of fit statistics to 
identify a few plausible models for further comparison. We used 2018 CRSS data to compare these 
plausible models to determine the final model. To this end, we first used 2018 CRSS data to make the 
corresponding point and standard error estimates �𝑋𝑋𝑖𝑖,   𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋𝑖𝑖)�. We then used the 2018 point estimates 
𝑋𝑋𝑖𝑖 and the GVFs fitted using 2016-2017 CRSS estimates to calculate standard error estimates 𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝐺𝐺𝐺𝐺(𝑋𝑋𝑖𝑖). 
These GVF standard error estimates were compared to the actual 2018 CRSS standard error estimates 
𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋𝑖𝑖) calculated from SAS SURVEY procedures. We considered the following criteria to compare the 
plausible models: 

1
𝑘𝑘
�

|𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝐺𝐺𝐺𝐺(𝑋𝑋𝑖𝑖) − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋𝑖𝑖)|
𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋𝑖𝑖)

𝑘𝑘

𝑖𝑖=1

 

here 𝑘𝑘 is the number of estimates used. This is the average absolute relative errors of the standard error 
estimates using GVF compared to the actual standard error estimates. We used the actual standard error 
estimates because the true standard errors were unknown.  
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4 GVF Model Fitting 
We describe the CRSS GVF model fitting process in this chapter. Our goal was to find the best model at 
each data level following the procedure described in section 3.6. All the estimates in this section were 
obtained using SAS Studio 3.6 Enterprise Edition.  

4.1 Exploratory Analysis 
To see if there is any apparent dependence of the standard error estimates on the point estimates, the 
scatterplots of the standard error estimates and the point estimates for the categorical and numerical 
variables (person level only has categorical variables) are presented in Figure 1 to 3. These figures show 
clear dependence between the standard error estimates and the point estimates.  

 

 

 

Figure 1: Crash Level Categorical and Numerical Variable Estimate Scatterplot 
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Figure 2: Vehicle Level Categorical and Numerical Variable Estimate Scatterplot 
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Figure 3: Person Level Categorical Variable Estimate Scatterplot 
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4.2 Model Fitting  
We fitted regression models 1 to 9 to three types of estimates: the categorical variable estimates, 
numerical variable estimates, and combined (categorical and numerical) estimates at three levels: the 
accident (crash) level, vehicle level, and person level (categorical variable estimates only). Tables 3 to 5 
present the 𝑅𝑅2. 𝑅𝑅2 measures the proportion of the total variability in the dependent variable that can be 
accounted for by the fitted model.  

Table 3: Accident Level Model Fitting R2 

Model Regression Model Categorical  Numerical Combined 
1 𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋) = 𝑎𝑎𝑋𝑋2 + 𝑏𝑏𝑋𝑋  0.9762 0.9877 0.9474 

2 𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋) = 𝑎𝑎𝑋𝑋2 + 𝑏𝑏𝑋𝑋 + 𝑐𝑐  0.9761 0.9865 0.9449 

3 ln[𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋)] = 𝑎𝑎 + 𝑏𝑏 ∗ ln [𝑋𝑋]  0.9768 0.9873 0.9737 

4 ln[𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋)] = 𝑎𝑎 + 𝑏𝑏 ∗ ln2[𝑋𝑋]    0.9769 0.9749 0.9760 

5 ln[𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋)] = 𝑎𝑎 + 𝑏𝑏 ∗ ln [𝑋𝑋] + 𝑐𝑐 ∗ ln2[𝑋𝑋]  0.9805 0.9886 0.9796 

6 𝑉𝑉−2 = 𝑎𝑎 + 𝑏𝑏𝑋𝑋  0.1711 0.3986 0.1750 

7 𝑉𝑉−2 = 𝑎𝑎 + 𝑏𝑏𝑋𝑋 + 𝑐𝑐𝑋𝑋2  0.2696 0.6511 0.2854 

8 ln(𝑉𝑉2) = 𝑎𝑎 + 𝑏𝑏 ∗ ln(𝑋𝑋)  0.6881 0.8891 0.6999 

9 𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = 𝑏𝑏 + 𝑎𝑎 ∗ ln (𝑋𝑋)  0.3827 0.4260 0.3745 

 

Table 4: Vehicle Level Model Fitting R2 

Model Regression Model Categorical  Numerical Combined 
1 𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋) = 𝑎𝑎𝑋𝑋2 + 𝑏𝑏𝑋𝑋  0.9595 0.9741 0.9477 

2 𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋) = 𝑎𝑎𝑋𝑋2 + 𝑏𝑏𝑋𝑋 + 𝑐𝑐  0.9574 0.9683 0.9477 

3 ln[𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋)] = 𝑎𝑎 + 𝑏𝑏 ∗ ln [𝑋𝑋]  0.9692 0.9633 0.9691 

4 ln[𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋)] = 𝑎𝑎 + 𝑏𝑏 ∗ ln2[𝑋𝑋]    0.9664 0.9601 0.9668 

5 ln[𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋)] = 𝑎𝑎 + 𝑏𝑏 ∗ ln [𝑋𝑋] + 𝑐𝑐 ∗ ln2[𝑋𝑋]  0.9710 0.9662 0.9712 

6 𝑉𝑉−2 = 𝑎𝑎 + 𝑏𝑏𝑋𝑋  0.2201 0.0775 0.1246 

7 𝑉𝑉−2 = 𝑎𝑎 + 𝑏𝑏𝑋𝑋 + 𝑐𝑐𝑋𝑋2  0.2973 0.1214 0.2418 

8 ln(𝑉𝑉2) = 𝑎𝑎 + 𝑏𝑏 ∗ ln(𝑋𝑋)  0.5133 0.4827 0.4900 

9 𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = 𝑎𝑎 + 𝑏𝑏 ∗ ln (𝑋𝑋)  0.4563 0.5220 0.3195 
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Table 5: Person Level Model Fitting R2 

Model Regression Model Categorical  
1 𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋) = 𝑎𝑎𝑋𝑋2 + 𝑏𝑏𝑋𝑋  0.9909 

2 𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋) = 𝑎𝑎𝑋𝑋2 + 𝑏𝑏𝑋𝑋 + 𝑐𝑐  0.9909 

3 ln[𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋)] = 𝑎𝑎 + 𝑏𝑏 ∗ ln [𝑋𝑋]  0.9717 

4 ln[𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋)] = 𝑎𝑎 + 𝑏𝑏 ∗ ln2[𝑋𝑋]    0.9725 

5 ln[𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋)] = 𝑎𝑎 + 𝑏𝑏 ∗ ln [𝑋𝑋] + 𝑐𝑐 ∗ ln2[𝑋𝑋]  0.9755 

6 𝑉𝑉−2 = 𝑎𝑎 + 𝑏𝑏𝑋𝑋  0.1249 

7 𝑉𝑉−2 = 𝑎𝑎 + 𝑏𝑏𝑋𝑋 + 𝑐𝑐𝑋𝑋2  0.2579 

8 ln(𝑉𝑉2) = 𝑎𝑎 + 𝑏𝑏 ∗ ln(𝑋𝑋)  0.6786 

9 𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = 𝑎𝑎 + 𝑏𝑏 ∗ ln (𝑋𝑋)  0.2614 
* Person Level Coefficient only includes Categorical variables 

The reduction in 𝑅𝑅2 by fitting models to the combined estimates is trivial. Therefore, we did not fit 
separate models to categorical estimates and numerical estimates. This would reduce the number of GVFs 
to be fitted and published. In addition, the GVF users don’t need to differentiate the domain size estimates 
and the domain total estimates in order to use the GVFs. 

The first 5 models are clearly plausible candidates because of their high 𝑅𝑅2. Next, we identified the final 
model from the first 5 models. 

4.3 Average Absolute Relative Errors and Model Coefficients  
After excluding Models 6 through 9 due to low 𝑅𝑅2 values, the average absolute relative errors of the 
standard error estimates were calculated for the remaining 5 models. These average absolute relative 
errors are the average absolute relative errors between the standard error (𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝐺𝐺𝐺𝐺(𝑋𝑋𝑖𝑖)) estimates 
calculated from the GVF fitted from the combined 2016-2017 estimates and the actual standard error 
estimates 𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋𝑖𝑖) estimated from the 2018 data using SAS SURVEY procedures. A low average absolute 
relative error is preferred for a good GVF. Accident level and vehicle level coefficients were fitted from 
categorical and numerical variable estimates. Person level coefficients were fitted from categorical 
variable estimates. 

Table 6 presents the average absolute relative errors for models 1 to 5. Table 7 presents the estimated 
coefficients for these models.  

Model 1 forces the intercept to be zero. This resulted in bad fit for some small point estimates. For 
example, one of the accident level point estimates was 𝑋𝑋 = 2,038.30. By the estimated coefficients of 
model 1, we have:  

𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝐺𝐺𝐺𝐺(𝑋𝑋) = �𝑎𝑎𝑋𝑋2 + 𝑏𝑏𝑋𝑋 = √5241870 ≈ 2290 

while the actual standard error estimate is:  

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = 207 

This resulted in a relative error of: 
2290− 207

207
≈ 10 
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From Table 7, model 1 vehicle level GVF and all model 2 GVFs have a negative coefficient. GVFs with 
negative coefficient may produce negative variance estimates hence imaginary standard error estimates 
for certain range of point estimates. This is not desirable for practical use. Use accident level model 2 as 
an example: because coefficient c is negative, small point estimates may have negative GVF variance 
estimate. For example, when X=57.5521: 

𝑉𝑉𝑎𝑎𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺(𝑋𝑋) = 𝑎𝑎𝑋𝑋2 + 𝑏𝑏𝑋𝑋 + 𝑐𝑐 = −284,120,586.9 

The average absolute relative errors for model 1 and 2 in Table 6 were calculated for those non-negative 
variances only. Because of these reasons, we do not further consider model 1 and 2.  

Models 3 to 5 had similar absolute relative errors. Models 3 and 4 were special cases of model 5. For 
practical use, it is desirable to use the most parsimonious model. In the next section, we look into the 
model fitting statistics to determine whether the full model 5 is necessary.  

Model  Crash Avg. Abs. 
Error 

Vehicle Avg. Abs. 
Error 

Person Avg. Abs. 
Error 

1 2.18794 0.23970 4.36351 
2 0.40993 72.3294 0.65228 
3 0.28096 0.34484 0.26237 
4 0.25538 0.33743 0.24666 
5 0.24181 0.32592 0.23547 

 

Model 1 
  𝒔𝒔𝒔𝒔𝒔𝒔(𝑿𝑿)  = √(𝒂𝒂𝒂𝒂^𝟐𝟐 +  𝒃𝒃𝒂𝒂) 

Accident Level 
Coefficients 

Vehicle Level 
Coefficients 

Person Level 
Coefficients* 

2016/2017 (combined) a = 0.00350 
b = 2564.554 

a = 0.00922 
b = -24096 

a = 0.00314 
b = 4225.447 

2018 a = 0.00271 
b = 2770.673 

a = 0.00661 
b = -7241.786 

a = 0.00272 
b = 3528.647 

Model 2 
  𝒔𝒔𝒔𝒔𝒔𝒔(𝑿𝑿)  =  √(𝒂𝒂𝒂𝒂^𝟐𝟐 +  𝒃𝒃𝒂𝒂 +  𝒄𝒄) 

   

2016/2017 (combined) 
a = 0.00344 

b = 2900.220 
c = -284287512 

a = 0.00935 
b = -26611 

c = 6040496740 

a = 0.0.00312 
b = 4527.446 

c = -470393364 

2018 
a = 0.00264 

b = 3172.581 
c = -3808957354 

a = 0.00662 
b = -7572.146 
c = 993044170 

a = 0.00270 
b = 3799.326 

c = -409294705 
Model 3 

  𝒍𝒍𝒍𝒍(𝒔𝒔𝒔𝒔𝒔𝒔(𝒂𝒂))  =  𝒂𝒂 +  𝒃𝒃 ∗ 𝒍𝒍𝒍𝒍(𝒂𝒂) 
   

2016/2017 (combined) a = -0.06256 
b = 0.79950 

a = -0.46990 
b = 0.85098 

a = -0.15941 
b = 0.80119 

2018 a = -0.05183 
b = 0.79146 

a = -0.41156 
b = 0.84049 

a = -0.10564 
b = 0.78968 

  

Table 6: Average Absolute Relative Errors of Standard Error Estimates 

Table 7: Estimated Model Coefficients 
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Model 4 
  𝒍𝒍𝒍𝒍�𝒔𝒔𝒔𝒔𝒔𝒔(𝒂𝒂)� = 𝒂𝒂 + 𝒃𝒃 ∗ 𝒍𝒍𝒍𝒍𝟐𝟐(𝒂𝒂) 

   

2016/2017 (combined) a = 3.90257 
b = 0.03815 

a = 4.05120 
b = 0.03806 

a = 3.81855 
b = 0.03824 

2018 a = 3.94026 
b = 0.03728 

a = 4.06559 
b = 0.03749 

a = 3.81822 
b = 0.03770 

Model 5 
  𝒍𝒍𝒍𝒍�𝒔𝒔𝒔𝒔𝒔𝒔(𝒂𝒂)� = 𝒂𝒂 + 𝒃𝒃 ∗ 𝒍𝒍𝒍𝒍(𝒂𝒂) +

𝒄𝒄 ∗ 𝒍𝒍𝒍𝒍𝟐𝟐(𝒂𝒂) 

   

2016/2017 (combined) 
a = 2.12560 
b = 0.35394 
c = 0.02144 

a = 1.36664 
b = 0.50254 
c = 0.01571 

a = 1.93305 
b = 0.37707 
c = 0.02038 

2018 
a = 2.33242 
b = 0.31521 
c = 002258 

a = 1.69299 
b = 0.44262 
c = 0.01787 

a = 2.02774 
b = 0.35777 
c = 0.02075 

4.4 The Final Model 
We now determine the final model from the following three models: 

• Model 3:  ln[𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋)] = 𝑎𝑎 + 𝑏𝑏 ∗ ln (𝑋𝑋) 

• Model 4:  ln[𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋)] = 𝑎𝑎 + 𝑏𝑏 ∗ ln2(𝑋𝑋) 

• Model 5:  ln[𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋)] = 𝑎𝑎 + 𝑏𝑏 ∗ ln (𝑋𝑋) + 𝑐𝑐 ∗ ln2(𝑋𝑋) 

The following SAS output was from PROC REG fitting model 5 to 2016-2017 accident level combined 
estimates. All estimated coefficients 𝑎𝑎 (Intercept), 𝑏𝑏 (log_est), and 𝑐𝑐 (log2_est) were highly significantly 
greater than zero.  
 

Number of Observations Read 1059 
Number of Observations Used 1059 

 
 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 2 3978.05623 1989.02812 25382.0 <.0001 
Error 1056 82.75221 0.07836   
Corrected Total 1058 4060.80844    

 
 

Root MSE 0.27994 R-Square 0.9796 
Dependent Mean 8.45861 Adj R-Sq 0.9796 
Coeff Var 3.30947   

 
 

Parameter Estimates 

Variable DF 
Parameter 
Estimate 

Standard 
Error t Value Pr > |t| 

Intercept 1 2.12560 0.13127 16.19 <.0001 
log_est 1 0.35394 0.02578 13.73 <.0001 
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Parameter Estimates 

Variable DF 
Parameter 
Estimate 

Standard 
Error t Value Pr > |t| 

log2_est 1 0.02144 0.00123 17.45 <.0001 
 

Fitting models 3 to 5 at vehicle and person level produced the similar results. Model 5 not only had the 
lowest average absolute relative error, it also had the highest R-square. All estimated coefficients of 
model 5 were significantly greater than zero and its residual distribution showed better fit (see Appendix 
A). In addition, using the accident level 𝑅𝑅2 estimated from the combined 2016-2017 data in Table 3, the 
F-tests: 

𝐹𝐹 =
�𝑅𝑅𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑙𝑙 5

2 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑙𝑙 3
2 � 1⁄

(1 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑙𝑙 5
2 ) (1059 − 3)⁄

= 305 ≫ 𝐹𝐹(1; 1056; 0.05) = 3.85 

and 

𝐹𝐹 =
�𝑅𝑅𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑙𝑙 5

2 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑙𝑙 4
2 � 1⁄

(1 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑙𝑙 5
2 ) (1059 − 3)⁄

= 186 ≫ 𝐹𝐹(1; 1056; 0.05) = 3.85 

rejected the null hypotheses that Model 3 and Model 4 fit the data. In summary, Model 5 was the final 
model.  

Table 8: Estimated Coefficients of the Final Model From 2016 to 2019 

Final Model 
𝒍𝒍𝒍𝒍�𝒔𝒔𝒔𝒔𝒔𝒔(𝒂𝒂)� = 𝒂𝒂 + 𝒃𝒃 ∗ 𝒍𝒍𝒍𝒍(𝒂𝒂) +

𝒄𝒄 ∗ 𝒍𝒍𝒍𝒍𝟐𝟐(𝒂𝒂)  

Accident Level 
Coefficients 

Vehicle Level 
Coefficients 

Person Level 
Coefficients 

 
2016 

a = 1.92772 
b = 0.38750 
c = 0.01947 

a = 1.17146 
b = 0.53866 
c = 0.01425 

a = 1.79032 
b = 0.40622 
c = 0.01930 

 
2017 

a = 2.33171 
b = 0.30826 
c = 0.02344 

a = 1.43152 
b = 0.48824 
c = 0.01629 

a = 2.05394 
b = 0.35287 
c = 0.02119 

 
2018 

a = 2.33242 
b = 0.31521 
c = 0.02258 

a = 1.69299 
b = 0.44262 
c = 0.01787 

a = 2.02774 
b = 0.35777 
c = 0.02075 

 
2019* 

a = 2.19494 
b = 0.33465 
c = 0.02185 

a = 1.70176 
b = 0.43713 
c = 0.01826 

a = 2.14416 
b = 0.32619 
c = 0.02238 

*: CRSS 2019 data became available when we were making the revision of this report. 

Table 8 presents the estimated coefficients of the final model from 2016-2019. To use the final model to 
estimate the standard error, first calculate the point estimate 𝑋𝑋, then use the following formula: 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = 𝑠𝑠𝑎𝑎+𝑏𝑏𝑋𝑋+𝑐𝑐𝑋𝑋2  

Appendix C provides GVF standard error estimates using this final model for 2016 – 2019 CRSS 
estimates at crash, vehicle, and person levels. 
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5 Examples of Using GVF 
We use two examples to show how to use the final model and Appendix C to estimate the standard errors 
of a total estimate and a proportion estimate. 

Example 1: Estimate the standard error of a sub-population size estimate.  

In the vehicle file, variable HITRUN_IM indicates whether each vehicle is “hit-and-run” vehicle or not. 
The total number of “hit-and-run” vehicles in 2018 police reported in-transport crashes is estimated as 
𝑋𝑋 = 817,573 (the summation of the weights of all “hit-and-run” vehicles). Using the 2018 vehicle level 
model coefficients listed in Table 8, the corresponding GVF standard error estimate is: 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = 𝑠𝑠1.69299+0.44262∗ln (817,573)+0.01787∗(ln (817,573))2 = 61,756 

compared with the actual variance estimate using SAS PROC SURVEY procedure: 66,812.  

Alternatively, we can also use the GVF standard error estimate tables in Appendix C. For estimate 𝑋𝑋 =
817,573 there is no standard error estimate in the 2018 CRSS GVF Standard Error Estimate table. We 
need to make approximation by interpolation. The following is an excerpt of the 2018 CRSS GVF 
Standard Error Estimate table around estimate 𝑋𝑋 = 817,573 at vehicle level: 

 

2018 CRSS GVF Standard Error Estimates 
Vehicle 

Estimate (X) Standard Error* 
800,000 60,500 
900,000 67,500 

 

𝑋𝑋 = 817,573 is between 𝑋𝑋 = 800,000 and 𝑋𝑋 = 900,000. Therefore, we approximate the standard error 
for estimate 𝑋𝑋 = 817,573 by interpolation as the following: 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = 60,500 + 
817,573− 800,000
900,000− 800,000

∗ (67,500− 60,500) = 61,730 

Example 2: Estimate the standard error of a proportion estimate.  

The proportion estimate is referred to the ratio of two total estimates: 

𝑅𝑅� =
𝑋𝑋�𝑑𝑑
𝑋𝑋�𝑝𝑝

 

Here 𝑋𝑋�𝑝𝑝 is the total estimate of 𝑋𝑋 (numeric or categorical) for population 𝑝𝑝, 𝑋𝑋�𝑑𝑑 is the total estimate of 𝑋𝑋 
for domain 𝑑𝑑 within population 𝑝𝑝. So, in general 𝑋𝑋�𝑑𝑑 ≤ 𝑋𝑋�𝑝𝑝.  

Our goal is to use the GVF variance estimates for 𝑋𝑋�𝑝𝑝 and 𝑋𝑋�𝑑𝑑 to estimate the standard error of 𝑅𝑅�. When 𝑅𝑅� 
and 𝑋𝑋�𝑝𝑝 are uncorrelated, by Wolter (2007) approximation (7.2.7): 

𝑉𝑉𝑅𝑅�
2 = 𝑉𝑉𝑋𝑋�𝑑𝑑

2 − 𝑉𝑉𝑋𝑋�𝑝𝑝
2  

here 𝑉𝑉𝑅𝑅�
2, 𝑉𝑉𝑋𝑋�𝑑𝑑

2 , and 𝑉𝑉𝑋𝑋�𝑝𝑝
2  are the relative variance of 𝑅𝑅�, 𝑋𝑋�𝑑𝑑, and 𝑋𝑋�𝑝𝑝 respectively. This is equivalent to:  

𝑣𝑣𝑎𝑎𝑉𝑉�𝑅𝑅�� = 𝑅𝑅�2 �
𝑣𝑣𝑎𝑎𝑉𝑉�𝑋𝑋�𝑑𝑑�
𝑋𝑋�𝑑𝑑2

−
𝑣𝑣𝑎𝑎𝑉𝑉�𝑋𝑋�𝑝𝑝�
𝑋𝑋�𝑝𝑝2

� 
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In other words, to approximate the variance of a ratio estimate, we can first find variance estimates: 
𝑣𝑣𝑎𝑎𝑉𝑉�𝑋𝑋�𝑑𝑑� and 𝑣𝑣𝑎𝑎𝑉𝑉�𝑋𝑋�𝑝𝑝�, then use the above formula to find the variance and the standard error of the ratio 
estimate 𝑅𝑅�.  

Recall that an important criterion we used for GVF is that the relative variance 𝑉𝑉2 is a decreasing 
function of the magnitude of the expectation 𝑋𝑋. Because of this and notice 𝑋𝑋�𝑑𝑑 ≤ 𝑋𝑋�𝑝𝑝 we have: 

𝑉𝑉𝑅𝑅�
2 = 𝑉𝑉𝑋𝑋�𝑑𝑑

2 − 𝑉𝑉𝑋𝑋�𝑝𝑝
2 ≥ 0 

Hence, 

𝑣𝑣𝑎𝑎𝑉𝑉�𝑅𝑅�� = 𝑅𝑅�2 �
𝑣𝑣𝑎𝑎𝑉𝑉�𝑋𝑋�𝑑𝑑�
𝑋𝑋�𝑑𝑑2

−
𝑣𝑣𝑎𝑎𝑉𝑉�𝑋𝑋�𝑝𝑝�
𝑋𝑋�𝑝𝑝2

� ≥ 0 

This indicates the above variance estimator for the proportion estimates normally produce non-negative 
variance estimates. 

The GVF for the standard error estimate of the proportion estimate is:  

𝑠𝑠𝑠𝑠𝑠𝑠�𝑅𝑅�� = 𝑅𝑅��
𝑣𝑣𝑎𝑎𝑉𝑉�𝑋𝑋�𝑑𝑑�
𝑋𝑋�𝑑𝑑2

−
𝑣𝑣𝑎𝑎𝑉𝑉�𝑋𝑋�𝑝𝑝�
𝑋𝑋�𝑝𝑝2

 

In Example 1, it is estimated there were 𝑋𝑋�𝑑𝑑 = 817,573 “hit-and-run” vehicles in 2018. This comprises of 
6.7854% of total vehicles involved in a police reported crash (𝑋𝑋𝑝𝑝=12,049,038 – the summation of the 
weights of all sampled vehicles). To estimate the associated standard error of this proportion estimate 𝑅𝑅� =
6.7854%, notice: 

𝑣𝑣𝑎𝑎𝑉𝑉�𝑋𝑋�𝑑𝑑� = 𝑠𝑠𝑠𝑠𝑠𝑠2(𝑋𝑋𝑑𝑑) = 61,7562 

𝑣𝑣𝑎𝑎𝑉𝑉�𝑋𝑋�𝑝𝑝� = �𝑠𝑠1.69299+0.44262∗ln (12,049,038)+0.01787∗(ln (12,049,038))2�
2

= 856,1372 

𝑠𝑠𝑠𝑠𝑠𝑠�𝑅𝑅�� = 6.7854% ∗ ��
61,756

817,573
�
2

− �
856,137

12,049,038
�
2

≈ 0.17% 

compared with the actual standard error estimate 0.42% calculated from SAS PROC SURVEY procedure. 
This example reminds us the GVFs give ballpark estimates.  
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APPENDIX A:  SAS PROC REG Output for Model Comparison 
The following is the SAS PROC REG output for models 3 to 5 using 2016-2017 combined estimates.  

Model 3: 

The SAS System 
 

MODEL 3: ln[ste(X)]=a + b*ln(X) 
 

The REG Procedure 
Model: yhat 

Dependent Variable: log_se 
 

Number of Observations Read 1059 
Number of Observations Used 1059 

 
 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 1 3954.18733 3954.18733 39200.3 <.0001 
Error 1057 106.62111 0.10087   
Corrected Total 1058 4060.80844    

 
 

Root MSE 0.31760 R-Square 0.9737 
Dependent Mean 8.45861 Adj R-Sq 0.9737 
Coeff Var 3.75478   

 
 

Parameter Estimates 

Variable DF 
Parameter 
Estimate 

Standard 
Error t Value Pr > |t| 

Intercept 1 -0.06256 0.04413 -1.42 0.1566 
log_est 1 0.79950 0.00404 197.99 <.0001 
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The SAS System 
 

MODEL 3: ln[ste(X)]=a + b*ln(X) 
 

The REG Procedure 
Model: yhat 

Dependent Variable: log_se 
 

 
 
 

Fit Diagnostics for log_se

0.9737Adj R-Square
0.9737R-Square
0.1009MSE

1057Error DF
2Parameters

1059Observations
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Model 4: 
 

The SAS System 
 

MODEL 4: ln[ste(X)]=a + b*ln(X)^2 
 

The REG Procedure 
Model: yhat 

Dependent Variable: log_se 
 

Number of Observations Read 1059 
Number of Observations Used 1059 

 
 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 1 3963.28185 3963.28185 42954.3 <.0001 
Error 1057 97.52660 0.09227   
Corrected Total 1058 4060.80844    

 
 

Root MSE 0.30376 R-Square 0.9760 
Dependent Mean 8.45861 Adj R-Sq 0.9760 
Coeff Var 3.59108   

 
 

Parameter Estimates 

Variable DF 
Parameter 
Estimate 

Standard 
Error t Value Pr > |t| 

Intercept 1 3.90257 0.02388 163.41 <.0001 
log2_est 1 0.03815 0.00018405 207.25 <.0001 
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The SAS System 
 

MODEL 4: ln[ste(X)]=a + b*ln(X)^2 
 

The REG Procedure 
Model: yhat 

Dependent Variable: log_se 
 

 
 
 

Fit Diagnostics for log_se

0.976Adj R-Square
0.976R-Square

0.0923MSE
1057Error DF

2Parameters
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Model 5: 
 

The SAS System 
 

MODEL 5: ln[ste(X)]=a + b*ln(X) + c*ln(X)^2 
 

The REG Procedure 
Model: yhat 

Dependent Variable: log_se 
 

Number of Observations Read 1059 
Number of Observations Used 1059 

 
 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 
Model 2 3978.05623 1989.02812 25382.0 <.0001 
Error 1056 82.75221 0.07836   
Corrected Total 1058 4060.80844    

 
 

Root MSE 0.27994 R-Square 0.9796 
Dependent Mean 8.45861 Adj R-Sq 0.9796 
Coeff Var 3.30947   

 
 

Parameter Estimates 

Variable DF 
Parameter 
Estimate 

Standard 
Error t Value Pr > |t| 

Intercept 1 2.12560 0.13127 16.19 <.0001 
log_est 1 0.35394 0.02578 13.73 <.0001 
log2_est 1 0.02144 0.00123 17.45 <.0001 
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The SAS System 
 

MODEL 5: ln[ste(X)]=a + b*ln(X) + c*ln(X)^2 
 

The REG Procedure 
Model: yhat 

Dependent Variable: log_se 
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APPENDIX B:  CRSS GVF Major SAS Programs  
 
Categorical Variable Point and Variance Estimates 
 
PROC SQL; 
 CREATE TABLE DATAACC AS SELECT DISTINCT 
  A.*, 
  B.A_CT 
 FROM CRSS2018.ACCIDENT A 
 LEFT JOIN CRSS2018.ACC_AUX B 
 ON (A.CASENUM = B.CASENUM); 
QUIT; 
 
data sudtab28; 
  set DATAACC; 
   format _ALL_;  
   
 IF A_CT = 1 THEN CRASH_TYPE= 1;   /* Single Veh */ 
 ELSE IF A_CT IN (2,3) THEN CRASH_TYPE= 2;  /* Multi Veh */ 
 ELSE CRASH_TYPE = 0;   
 IF REL_ROAD IN (1,11) THEN ROADWAY = 1;  /* On Roadway */ 
 IF REL_ROAD IN (4,5,6) THEN ROADWAY = 2;  /* Off-roadway */ 
 IF REL_ROAD IN (2) THEN ROADWAY = 3;    /* Shoulder  */ 
 IF REL_ROAD IN (3) THEN ROADWAY = 4;   /* Median  */ 
 IF REL_ROAD IN (7,8,10,98,99) THEN ROADWAY = 9; /* Other   */ 
   
   IF MAXSEV_IM IN (1,2,3,5) THEN LEVEL2 = 1;  /* INJURY CRASHES */ 
 ELSE IF MAXSEV_IM IN (0,6,8) THEN LEVEL2 = 2; /* PROPERTY-DAMAGE-ONLY CRASHES */ 
 ELSE LEVEL2 = 0;     /* OTHER CRASHES */   
run; 
 
proc sort data= sudtab28; 
  by psustrat PSU_VAR casenum; 
run; 
 
proc surveyfreq data= sudtab28 VARMETHOD=JK; 
 title1 "National Highway Traffic Safety Administration"; 
 title3 "&DATASET. -- Crashes Table &_tabnum -- Computed by PROC SURVEYFREQ"; 
 title5 "CRASH BY CRASTH TYPE, RELATION TO ROADWAY, AND CRASH SEVERITY"; 
 cluster PSU_VAR; 
 strata psustrat; 
 weight weight; 
 tables LEVEL2*CRASH_TYPE*ROADWAY; 
 ods output crosstabs=sewgts2; 
run; 
 
data stderr28 (keep=by_lvl row_lvl col_lvl tabl_num nsum wsum sewgt log_se log2_est); 
  length by_lvl row_lvl col_lvl tabl_num nsum wsum sewgt log_se log2_est 8; 
  set sewgts2; 
 
  by_lvl = LEVEL2; 
  row_lvl = CRASH_TYPE; 
  col_lvl = ROADWAY; 
  nsum = frequency; 
  wsum = wgtfreq; 
  sewgt = stddev; 
 
  if (row_lvl eq .) then row_lvl = 0; 
  if (col_lvl eq .) then col_lvl = 0; 
 
  log_se = log(sewgt); 
  est = wsum; 
  log_est = log(wsum); 
  log2_est = (log(wsum))**2; 
run; 
 

Numerical Variable Point and Variance Estimates 
 
proc surveymeans data= sudtab28 SUM SUMWGT VARMETHOD=jk; 
 title1 "National Highway Traffic Safety Administration"; 
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 title3 "&DATASET. -- Crashes Table &_tabnum -- Computed by PROC SURVEYFREQ"; 
 cluster PSU_VAR; 
 strata psustrat; 
 weight weight; 
 DOMAIN MANCOL_IM; 
 VAR VE_FORMS; 
 ods output DOMAIN=sewgts2; 
run; 
 
data stderr_VE_FORMS (keep= by_lvl row_lvl col_lvl  nsum wsum sewgt log_se log2_est); 
  length by_lvl row_lvl col_lvl  nsum wsum sewgt log_se log2_est 8; 
  set sewgts2; 
 
  by_lvl = .; 
  col_lvl = MANCOL_IM; 
  row_lvl = .; 
  nsum = sum; 
  wsum = sum;  
  sewgt = stddev; 
 
  if (row_lvl eq .) then row_lvl = 0; 
  if (col_lvl eq .) then col_lvl = 0; 
 
  log_se = log(sewgt); 
  est = wsum; 
  log_est = log(wsum); 
  log2_est = (log(wsum))**2; 
 
run; 
 
proc sort data= stderr_VE_FORMS; 
  by by_lvl row_lvl col_lvl; 
run; 
 

Final Model Fitting (crash level data)  
 
data LOG_EM_CRASH_1617_3; 
 set GVF2016.stderr24 GVF2016.stderr25 GVF2016.stderr26 GVF2016.stderr28 
GVF2016.stderr29 GVF2016.stderr30 GVF2017.stderr24 GVF2017.stderr25 
GVF2017.stderr26 GVF2017.stderr28 GVF2017.stderr29 GVF2017.stderr30 
GVF2016.stderr_VE_TOTAL GVF2016.stderr_VE_FORMS GVF2016.stderr_PERMVIT 
GVF2016.stderr_NO_INJ_IM GVF2016.stderr_PEDS GVF2016.stderr_PERNOTMVIT 
GVF2016.stderr_PVH_INVL GVF2017.stderr_VE_TOTAL GVF2017.stderr_VE_FORMS 
GVF2017.stderr_PERMVIT GVF2017.stderr_NO_INJ_IM GVF2017.stderr_PEDS 
GVF2017.stderr_PERNOTMVIT GVF2017.stderr_PVH_INVL; 
 
  /* DELETE RECORDS WITH SAMPLE SIZE <= 15 AS THESE ESTIMATES ARE UNSTABLE */ 
 IF NSUM <= 15 THEN DELETE; 
 
 log_se = log(sewgt); 
 sqrt_se = sqrt(sewgt); 
 inv_wsum = 1/wsum; 
 inv_wsum2 = 1/wsum**2; 
 log_est = log(wsum); 
 log2_est = (log(wsum))**2; 
  
 v2 = sewgt**2/wsum**2; 
 v2inv = wsum**2/sewgt**2; 
 logv2 = log(v2); 
  
 wsum2 = wsum**2; 
 inv_se = 1/sewgt; 
 sewgt2=sewgt**2; 
run; 
 
proc sort data=LOG_EM_CRASH_1617_3; 
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 by tabl_num by_lvl row_lvl col_lvl; 
run; 
 
MODEL 5: LOG-LOG-QUADRATIC LOG 
 
PROC REG DATA=LOG_EM_CRASH_1617_3; 
 MODEL log_se = log_est log2_est; 
RUN; 
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APPENDIX C:  CRSS GVF Standard Error Estimates  
 

2016 CRSS Estimates and GVF Standard Error Estimates 
Crash Vehicle Person 

Estimate (X) Standard 
Error* 

Estimate (X) Standard 
Error* 

Estimate (X) Standard 
Error* 

1,000 300 1,000 300 1,000 200 
5,000 800 5,000 900 5,000 800 
6,000 900 10,000 1,500 10,000 1,300 
7,000 1,000 20,000 2,700 20,000 2,200 
8,000 1,100 30,000 3,800 30,000 3,100 
9,000 1,200 40,000 4,800 40,000 3,900 

10,000 1,300 50,000 5,800 50,000 4,700 
20,000 2,200 60,000 6,800 60,000 5,400 
30,000 3,000 70,000 7,700 70,000 6,200 
40,000 3,700 80,000 8,700 80,000 6,900 
50,000 4,400 90,000 9,600 90,000 7,600 
60,000 5,200 100,000 10,500 100,000 8,300 
70,000 5,800 200,000 19,300 200,000 15,100 
80,000 6,500 300,000 27,800 300,000 21,700 
90,000 7,200 400,000 36,000 400,000 28,000 

100,000 7,900 500,000 44,100 500,000 34,300 
200,000 14,200 600,000 52,100 600,000 40,600 
300,000 20,200 700,000 60,000 700,000 46,800 
400,000 26,000 800,000 67,900 800,000 53,000 
500,000 31,700 900,000 75,700 900,000 59,100 
600,000 37,400 1,000,000 83,500 1,000,000 65,300 
700,000 43,000 2,000,000 160,500 2,000,000 126,300 
800,000 48,600 3,000,000 236,700 3,000,000 187,500 
900,000 54,200 4,000,000 312,800 4,000,000 249,100 

1,000,000 59,700 5,000,000 388,800 5,000,000 311,200 
2,000,000 114,500 6,000,000 464,900 6,000,000 373,800 
3,000,000 169,000 7,000,000 541,200 7,000,000 436,900 
4,000,000 223,600 8,000,000 617,700 8,000,000 500,500 
5,000,000 278,600 9,000,000 694,300 9,000,000 564,500 
6,000,000 333,800 10,000,000 771,200 10,000,000 629,000 
6,500,000 361,500 11,000,000 848,300 11,000,000 693,800 
7,000,000 389,300 12,000,000 925,500 12,000,000 759,200 

*: 𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = 𝑠𝑠𝑎𝑎+𝑏𝑏𝑙𝑙𝑛𝑛(𝑋𝑋)+𝑐𝑐𝑙𝑙𝑛𝑛(𝑋𝑋)2 
a = 1.92772 
b = 0.38750 
c = 0.01947 

a = 1.17146 
b = 0.53866 
c = 0.01425 

a = 1.79032 
b = 0.40622 
c = 0.01930 
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2017 CRSS Estimates and GVF Standard Error Estimates 
Crash Vehicle Person 

Estimate (X) Standard 
Error* 

Estimate (X) Standard 
Error* 

Estimate (X) Standard 
Error* 

1,000 300 1,000 300 1,000 200 
5,000 800 5,000 900 5,000 700 
6,000 900 10,000 1,500 10,000 1,200 
7,000 1,000 20,000 2,600 20,000 2,100 
8,000 1,100 30,000 3,600 30,000 2,800 
9,000 1,200 40,000 4,600 40,000 3,500 

10,000 1,300 50,000 5,500 50,000 4,200 
20,000 2,200 60,000 6,500 60,000 4,900 
30,000 3,000 70,000 7,400 70,000 5,600 
40,000 3,800 80,000 8,300 80,000 6,200 
50,000 4,500 90,000 9,100 90,000 6,900 
60,000 5,200 100,000 10,000 100,000 7,500 
70,000 5,900 200,000 18,400 200,000 13,600 
80,000 6,600 300,000 26,400 300,000 19,400 
90,000 7,300 400,000 34,200 400,000 25,100 

100,000 8,000 500,000 41,900 500,000 30,700 
200,000 14,600 600,000 49,600 600,000 36,300 
300,000 20,900 700,000 57,200 700,000 41,800 
400,000 27,100 800,000 64,700 800,000 47,300 
500,000 33,300 900,000 72,200 900,000 52,800 
600,000 39,400 1,000,000 79,700 1,000,000 58,300 
700,000 45,500 2,000,000 153,900 2,000,000 112,900 
800,000 51,700 3,000,000 227,900 3,000,000 167,700 
900,000 57,800 4,000,000 302,000 4,000,000 223,000 

1,000,000 63,900 5,000,000 376,400 5,000,000 278,900 
2,000,000 125,300 6,000,000 451,200 6,000,000 335,300 
3,000,000 187,800 7,000,000 526,300 7,000,000 392,300 
4,000,000 251,400 8,000,000 601,800 8,000,000 449,700 
5,000,000 316,100 9,000,000 677,700 9,000,000 507,700 
6,000,000 381,700 10,000,000 753,900 10,000,000 566,100 
6,500,000 414,900 11,000,000 830,500 11,000,000 625,000 
7,000,000 448,400 12,000,000 907,400 12,000,000 684,300 

*: 𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = 𝑠𝑠𝑎𝑎+𝑏𝑏𝑙𝑙𝑛𝑛(𝑋𝑋)+𝑐𝑐𝑙𝑙𝑛𝑛(𝑋𝑋)2 
a = 2.33171 
b = 0.30826 
c = 0.02344 

a = 1.43152 
b = 0.48824 
c = 0.01629 

a = 2.05394 
b = 0.35287 
c = 0.02119 

 

  



 

C-3 
 

2018 CRSS Estimates and GVF Standard Error Estimates 
Crash Vehicle Person 

Estimate (X) Standard 
Error* 

Estimate (X) Standard 
Error* 

Estimate (X) Standard 
Error* 

1,000 300 1,000 300 1,000 200 
5,000 800 5,000 900 5,000 700 
6,000 900 10,000 1,500 10,000 1,200 
7,000 1,000 20,000 2,500 20,000 2,000 
8,000 1,100 30,000 3,500 30,000 2,800 
9,000 1,200 40,000 4,400 40,000 3,500 

10,000 1,300 50,000 5,300 50,000 4,100 
20,000 2,100 60,000 6,200 60,000 4,800 
30,000 2,900 70,000 7,000 70,000 5,400 
40,000 3,700 80,000 7,800 80,000 6,100 
50,000 4,400 90,000 8,700 90,000 6,700 
60,000 5,100 100,000 9,500 100,000 7,300 
70,000 5,800 200,000 17,300 200,000 13,200 
80,000 6,400 300,000 24,800 300,000 18,800 
90,000 7,100 400,000 32,100 400,000 24,200 

100,000 7,700 500,000 39,300 500,000 29,600 
200,000 14,000 600,000 46,400 600,000 34,900 
300,000 19,900 700,000 53,500 700,000 40,200 
400,000 25,700 800,000 60,500 800,000 45,400 
500,000 31,500 900,000 67,500 900,000 50,700 
600,000 37,200 1,000,000 74,500 1,000,000 55,900 
700,000 42,800 2,000,000 143,800 2,000,000 107,600 
800,000 48,500 3,000,000 213,000 3,000,000 159,400 
900,000 54,100 4,000,000 282,500 4,000,000 211,400 

1,000,000 59,700 5,000,000 352,300 5,000,000 263,900 
2,000,000 115,700 6,000,000 422,500 6,000,000 316,800 
3,000,000 172,100 7,000,000 493,200 7,000,000 370,100 
4,000,000 229,200 8,000,000 564,300 8,000,000 423,800 
5,000,000 286,900 9,000,000 635,700 9,000,000 477,900 
6,000,000 345,300 10,000,000 707,600 10,000,000 532,300 
6,500,000 374,700 11,000,000 779,900 11,000,000 587,200 
7,000,000 404,300 12,000,000 852,600 12,000,000 642,400 

*: 𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = 𝑠𝑠𝑎𝑎+𝑏𝑏𝑙𝑙𝑛𝑛(𝑋𝑋)+𝑐𝑐𝑙𝑙𝑛𝑛(𝑋𝑋)2 
a = 2.33242 
b = 0.31521 
c = 0.02258 

a = 1.69299 
b = 0.44262 
c = 0.01787 

a = 2.02774 
b = 0.35777 
c = 0.02075 
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2019 CRSS Estimates and GVF Standard Error Estimates 
Crash Vehicle Person 

Estimate (X) Standard 
Error* 

Estimate (X) Standard 
Error* 

Estimate (X) Standard 
Error* 

1,000 300 1,000 300 1,000 200 
5,000 800 5,000 900 5,000 700 
6,000 900 10,000 1,400 10,000 1,100 
7,000 1,000 20,000 2,500 20,000 1,900 
8,000 1,100 30,000 3,500 30,000 2,700 
9,000 1,200 40,000 4,400 40,000 3,300 

10,000 1,200 50,000 5,300 50,000 4,000 
20,000 2,100 60,000 6,100 60,000 4,600 
30,000 2,900 70,000 7,000 70,000 5,300 
40,000 3,600 80,000 7,800 80,000 5,900 
50,000 4,300 90,000 8,600 90,000 6,500 
60,000 5,000 100,000 9,500 100,000 7,100 
70,000 5,700 200,000 17,300 200,000 12,800 
80,000 6,400 300,000 24,800 300,000 18,400 
90,000 7,000 400,000 32,200 400,000 23,800 

100,000 7,700 500,000 39,400 500,000 29,100 
200,000 13,800 600,000 46,600 600,000 34,400 
300,000 19,700 700,000 53,800 700,000 39,700 
400,000 25,500 800,000 60,900 800,000 44,900 
500,000 31,200 900,000 68,000 900,000 50,200 
600,000 36,900 1,000,000 75,100 1,000,000 55,400 
700,000 42,500 2,000,000 145,500 2,000,000 107,800 
800,000 48,100 3,000,000 215,900 3,000,000 160,700 
900,000 53,600 4,000,000 286,900 4,000,000 214,200 

1,000,000 59,200 5,000,000 358,300 5,000,000 268,500 
2,000,000 114,700 6,000,000 430,200 6,000,000 323,400 
3,000,000 170,400 7,000,000 502,700 7,000,000 378,900 
4,000,000 226,800 8,000,000 575,700 8,000,000 435,100 
5,000,000 283,700 9,000,000 649,100 9,000,000 491,800 
6,000,000 341,200 10,000,000 723,100 10,000,000 549,000 
6,500,000 370,200 11,000,000 797,500 11,000,000 606,800 
7,000,000 399,300 12,000,000 872,300 12,000,000 665,100 

*: 𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋) = 𝑠𝑠𝑎𝑎+𝑏𝑏𝑙𝑙𝑛𝑛(𝑋𝑋)+𝑐𝑐𝑙𝑙𝑛𝑛(𝑋𝑋)2 
a = 2.19494 
b = 0.33465 
c = 0.02185 

a = 1.70176 
b = 0.43713 
c = 0.01826 

a = 2.14416 
b = 0.32619 
c = 0.02238 
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