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Executive Summary 
 
Objective. The Crash Outcome Data Evaluation System (CODES) is a data system facilitated by 
the National Highway Safety Traffic Administration that links State-level crash data with 
medical and financial outcome data, such as hospital and emergency medical services data. This 
allows for improved studies of medical and financial outcomes of motor vehicle crashes. 
Because of the lack of personally identifiable information, crash and outcome data are linked 
probabilistically using a technique called multiple imputations. 
 
One of the variables often studied in CODES analyses is the hospital charge that was charged to 
each crash victim. The objective of this report is to develop a statistical technique for estimating 
the median of the hospital charge and other similar variables, as well as the confidence interval 
for the median. 
 
Method. This report derives the maximum likelihood estimator (MLE) of the population median 
and its confidence interval. Note that the population median is the 50th percentile of the 
underlying probability distribution as opposed to the sample median, which is the 50th percentile 
of the observed data. The estimator is designed for non-negative positively skewed variables, 
such as cost, charge, price, income, wealth, and so on. It can be used with multiply imputed data, 
such as the data available in CODES, as well as with non-multiply imputed data, such as the data 
found in many other data systems. The report also derives the asymptotic MLE of the median 
and its confidence interval, though the MLE is preferred. 
 
The report performs simulations to ascertain the performance of the above mentioned estimators.  
It also demonstrates the use of the estimators using Utah CODES data from 2003 to 2005.  
 
Results. The derived estimators of the median and its confidence interval have desirable 
theoretical properties. For example, they minimize the root mean squared error, a common 
criterion used to define the “best” estimator. In simulations, the MLE performed well, 
outperforming even the sample median. 
 
Conclusion. This report has developed a useful estimator of the median of hospital charges. The 
estimator gives both a point estimate as well as a confidence interval. It performs well in 
simulations. Notably, in simulations, the calculated confidence interval contained the true 
median with the appropriate probability. In application to real data, the estimator gives a result 
that may be very different from the sample median. This indicates that using the sample median 
to estimate the median may produce a large error.  
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Introduction 
 
In many applications, there is the need to estimate the median of a non-negative positively 
skewed quantity, such as cost, charge, price, income, wealth, and so on. For example, the users 
of CODES health data have an interest in estimating the median charge for a hospital stay. The 
application to CODES is further complicated by the fact that CODES data consists of several 
multiply imputed datasets. 
 
CODES is a data system facilitated by NHTSA that links State-level crash data with medical and 
financial outcome data, such as hospital and emergency medical services data. This allows for 
improved studies of medical and financial outcomes of motor vehicle crashes. Because of the 
lack of personally identifiable information, crash and outcome data are linked probabilistically 
using a technique called multiple imputations (McGlincy, 2004). 
 
CODES evolved as the result of the Intermodal Surface Transportation Efficiency Act of 1991, 
which provided funds to NHTSA to report to Congress on the benefits of seat belts and 
motorcycle helmets for people involved in motor vehicle crashes. To measure benefits in terms 
of reducing death, disability, and medical costs, NHTSA created CODES, a State-level data 
system that includes all people involved in police-reported crashes. The CODES report was 
delivered to Congress in February 1996 (NHTSA, 1996). 
 
One of the variables often studied in CODES analyses is the hospital charge that was charged to 
each crash victim. The objective of this report is to develop a statistical technique for estimating 
the median of the hospital charge and other similar variables, as well as the confidence interval 
for the median. 
 
The paper derives a useful estimator of the median of such a quantity along with its confidence 
interval. The estimator can be used both with multiply imputed data and with data that has not 
been multiply imputed. In other words, the estimator can be used with databases which do not 
consist of several multiply imputed datasets. The paper performs simulations to illustrate the 
performance of the estimator and demonstrates the use of the estimator on real data.  
 
Various measures of central tendency of hospital charge, including the mean, the median, and the 
mode, could be interesting. It is not that the mean is “too high” and the median is “more stable”. 
Different measures of central tendency measure different things. The mean is useful in 
estimating the total charges. The mode is the most likely charge. Finally, the median is the 
charge paid by a “typical” person. These and other measures of central tendency could be 
interesting. This paper only addresses the estimation of the median. 
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Solution 
 
Maximum Likelihood Estimator 
 
Let’s call the random variable that of interest X . For example, this could be the charge for a 
hospital stay. Suppose there are some observations of X , denoted by xij , where j = 1,2,...,k  

indexes the multiply imputed dataset, while i = 1,2,...,n  indexes the observation within each 
dataset. Note that in CODES, k  5 . When dealing with data that is not multiply imputed, k  1 . 
Let m  be the median of X .  
 
The sample median is the method of moments estimator of the median. However, maximum 
likelihood estimators (MLEs) are better than method of moments estimators. MLEs are often 
considered the “best” estimators since they minimize the root mean squared error (RMSE). This 
section derives the MLE of m , denoted by m̂ , along with its confidence interval.  
 
Let’s assume that X  follows the log-normal distribution. This assumption is equivalent to 
assuming that the logarithm of X  follows the normal distribution. It is a typical assumption for 
variables such as cost, charge, price, income, wealth, and so on. The distributional assumption 
makes sense if the random variable X  is non-negative and positively skewed, as is the case with 
hospital charges. 
 
Assume further that, within each dataset j , X i  are independent and identically distributed. This 

means that all X  follow the same probability distribution and that, within each dataset, they are 
independent of each other. Across the datasets j , X  is assumed to be identically distributed but 
not necessarily independent. This reflects the fact that observations across multiply imputed 
datasets are related to each other.   
 
Let Y  ln X . Y  has the normal distribution with parameters   and  2 . Thus, the MLE of   
conditional on dataset j  is 
 

1 1̂ j   yij   ln x
n n ij  (1). 

i i

 
Conditional on data in all k  datasets, the MLE of   is 
 

1̂   ln x
nk ij   (2). 

j i

 
Recall that MLEs have the property of asymptotic normality. This means that, as the amount of 
data approaches infinity, the distribution of an MLE approaches a normal distribution. However, 
in this particular case, since the logarithm of X  is itself normally distributed, the above 
estimators of   are also normally distributed even in small samples.  
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The MLE of the variance of Y  conditional on dataset j  is: 
 

̂ 2 1
j  ln xij  ̂

2

n j   (3). 
i

 
Thus, the MLE of the variance of the estimator of   conditional on dataset j  is: 
 

2
̂ 2

ŝ  j  n2  2
j ln x 

n ij ˆ j   (4). 
i

 
Applying the law of total variance gives the estimator of the variance of the estimator of    
conditional on all the data: 
 

1 
ŝ 2   ŝ 2   ̂  ̂ 2 

k  j j  (5). 
 j j 

 
The above expression for variance takes into account both variance within each multiply imputed 
dataset and variance across the multiply imputed datasets. Note that the law of total variance 
does not assume independence, so there is no issue in applying it to multiply imputed data. 
 
Since Y  is normally distributed, so is the estimator of   in equation 2. Thus, the 95% 

confidence interval for   is the interval between ̂Y 0.025  and ̂Y 0.975 , where ̂Y  p  is the 
MLE of the p -th quantile of the estimator of  : 
 

̂  p  ̂  1 2
Y  p ŝ  (6), 

 
where 1 p  is the standard normal quantile function. Again, since the estimator of   is 
normally distributed even in small samples, this expression gives an exact confidence interval.  
 
Note that the median of X  is given by  
 
m  exp     (7).1 
 
Also recall that MLEs have the property of functional invariance. This means that a function of 
an MLE is itself the MLE of the function. Symbolically, let   be a random variable, let f    be 
a function of that variable, and let hats denote MLEs. Then, the following equality is true: 
 

f̂    f ̂     (8). 
 
Thus, the maximum likelihood estimator of the median of X  is  

                                                 
1 The median of a log-normal distribution is exp , while the expected value is exp  0.5 2  . 
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 1 

m̂  exp   ln xij  (9). 
 nk j i 

 
Not only does the above estimator minimize the RMSE, but, as the simulations below show, it is 
unbiased. The MLE of the quantiles of the estimator of the median is 
 

̂  p  exp̂  1 p ŝ 2  (10). 
 
The 95% confidence interval for estimator of the median of X  is just the interval between 

̂ 0.025 and ̂  0.975 .  
 
Note that the derivation of the above estimators of the median and its confidence interval  is not 
based on asymptotic arguments. They are the best estimators, in the sense that they minimize the 
root mean squared error, even for small samples.  
 
In case one is dealing with data that is not multiply imputed, the above estimator simplifies by 
setting the number of imputations to k  1 . Thus, with non-multiply imputed data, the estimator 
becomes 
 

1̂   ln x
n i    (11) 

i

m̂  exp ̂    (12) 
 

ŝ 2  n2ln xi  ̂ 2  (13) 
i

̂  p  exp̂  1 p ŝ 2  (14). 
 
 
Objections 
 
Several objections may be raised against the MLE in equations 9 and 10. 
 
Asymmetric confidence interval. One objection is that the confidence interval is not in the 
usual form of a point estimator plus or minus some multiple of the standard error. The response 
is that there is no reason that a confidence interval should take this usual form. What’s more, in 
this particular case, it is good that it doesn’t. This is because X , and thus its median, are non-
negative. However, a confidence interval in the usual form might include negative values, which 
would be nonsensical. Since the exponential function is non-negative, the confidence interval as 
given above never includes negative values. 
 
Unusual form of the estimator. Another objection is as follows. Schafer (1997, pp. 108-110), 
citing Rubin (1987), gives a procedure for combining estimators based on multiply imputed data. 
However, the MLE given above does not use this procedure.  



 

The procedure, described in more detail in the appendix, can only be applied to estimators that 
are normally distributed. Thus, since MLEs are asymptotically normal, the procedure can be 
applied to MLEs, but only when the sample size approaches infinity. When this is the case, the 
procedure gives the asymptotic MLE. When the sample size is large, the asymptotic MLE is 
equivalent to, though it might be numerically slightly different from, the MLE. In other words, it 
is an approximation of the MLE that is valid only for large sample sizes. Since the MLE has 
been found, there is no reason to use an approximation of the MLE. See the appendix for  more 
details. Also see the discussion of simulated estimator performance, below.  
 
Potential bias due to record linkage. Yet another objection to the MLE is that, due to the 
record linkage procedure employed by CODES, the hospital charges, as imputed in the k  
datasets, might not be representative of the hospital charges in the population. Since the data that 
is used is skewed, the estimator presented above is not an accurate estimator of the population 
median.  
 
It is true that the MLE estimator assumes, as do most statistical estimators, that the available data 
is representative of the population. We are not aware of any studies that demonstrate the 
presence of a skew in CODES linked data; nor of studies that demonstrate that such a skew does 
not exist. Thus, further investigation is certainly necessary.  
 
While work on correcting estimators based on linked data exists (such as Larsen, 2004, and 
Lahiri & Larsen, 2000), implementing these corrections requires knowledge of linkage 
probabilities. Users of CODES data, who are the ones interested in estimating median hospital 
charges, typically do not know these probabilities. Properly correcting the estimator would have 
to be done during the linkage process itself. This is one possible direction for future work. 
 
Finally, whether or not linked data is skewed, it would be skewed even more if only the high 
probability links are taken, while the lower probability links are discarded. The proper procedure 
used in CODES record linkage uses links of all probabilities.  
 

Simulations 
 
To illustrate the performance of the estimators derived above, the following simulations were 
performed.  
 
The simulated data was drawn from the log-normal distribution with the parameters of    0  

and  2 1 . Thus, the true median of the data was m  exp()  1. The expected value was 

exp  0.5 2   1.6487  while the mode was exp  2   0.3679 .  
 
The data was simulated such that it was independent across observations i  and correlated across 
datasets j . In this way, the simulated data is similar to the multiply imputed data available in 
CODES. In each simulation, there were k  5  datasets, which matches the number of multiply 
imputed datasets used in CODES. For each of the k  datasets, n  1000  observations were used. 
The number of observations available in CODES is typically much larger. Note that the more 
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observations, the better the estimator performance. A total of 10,000 simulations were 
performed. 
 
Figure 1 shows the distribution of the population that was used in the simulation. As expected, 
the population is positively skewed. The population median of 1 is shown by a vertical line. As 
mentioned above, the mode is less than the median which is less than the mean. In the figure, the 
mode is the maximum of the distribution.  
 

Figure 1 Distributions of the population used in the simulation  

 
Blue line = distribution of the population. 
Red vertical line = true median. 
 
Figure 2 shows the distribution of the MLE (equation 9) and the asymptotic MLE (equation 22) 
of the median. The figure also shows the distribution of the sample median. 
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Figure 2 The distributions of the following estimators of the median: MLE, asymptotic MLE, and sample 
median 

 
Solid blue line = MLE and asymptotic MLE of the median. 
Dotted green line = sample median. 
Solid red vertical line = true median. 
 
The distributions of the MLE and the asymptotic MLE are virtually identical, so much so that 
they cannot be distinguished on the graph. Both distributions are centered around the true median 
of 1. The distribution of the sample median is also centered around the true median, though it is 
noticeably more spread out, indicating that using the sample median produces more error than 
either the MLE or the asymptotic MLE. 
 
For each of the three estimators, Table 1 gives the root mean squared error (RMSE), bias, and 
standard error.  
 

Table 1 Properties of three point estimators 

Estimator RMSE Bias Std Err 
MLE 0.03208 0.00101 0.03207
Asym MLE 0.03208 0.00103 0.03207
Sample median 0.03745 0.00120 0.03743

 
RMSE is a measure of the typical distance between an estimator and the true parameter value. A 
common criterion for choosing the best estimator is to pick the one that minimizes RMSE. 
Maximum likelihood estimators minimize RMSE. Asymptotic MLEs minimize RMSE as the 
sample size approaches infinity.  
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As Table 1 shows, in this simulation, the RMSE for both the MLE and the asymptotic MLE was 
about 0.03208. The RMSE was slightly lower for the MLE. This is consistent with the property 
that MLEs minimize RMSE. However, practically speaking, the two RMSEs were equal. The 
RMSE for the sample median was 0.03745, indicating that using the sample median to estimate 
the population median produced more error than using either the MLE or the asymptotic MLE. 
 
Bias is the difference between the average estimate and 1, the true value of the median. In this 
particular simulation, the bias for all three estimators was about 0.1%, indicating that all three 
estimators are unbiased. Interestingly enough, though all biases were very small and about equal, 
MLE had the lowest bias. 
 
Standard error measures the spread of the estimates. Again, standard error of MLE and 
asymptotic MLE were basically equal, though that of the MLE was slightly lower. The standard 
error of the sample median was higher. 
 
Figure 3 shows the distributions of the 95% confidence limits of the MLE. Vertical lines indicate 
the population median and the confidence limits calculated by substituting population parameters 
into the equations. 
 

Figure 3 The distributions of the lower and upper 95% confidence limits of the MLE 

 
Blue lines = distributions of the lower and upper confidence limits. 
Red vertical lines = true confidence limits and the true median. 
 
As expected, the MLE 95% confidence interval contained the true value of the median 
approximately 95% of the time. The distributions of the confidence limits centered around the 
true confidence limits of 0.940 and 1.064. Again, note that the MLE confidence interval is 
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asymmetric. The true interval was about 0.60 units below the true median and 0.64 units above 
the true median. 
 
Figure 4 shows the distributions of the 95% confidence limits of the asymptotic MLE. The 
confidence interval was wider than the MLE confidence interval. The true interval ranged from 
0.922 to 1.078. Though this is the 95% interval, it included the true value of the median about 
99% of the time. Thus, in simulations, the asymptotic MLE confidence interval was wider than it 
should have been. The interval was symmetric, extending about 0.078 units to either side of the 
median. 
 

Figure 4 The distributions of the lower and upper 95% confidence limits of the asymptotic MLE 

 
Blue lines = distributions of the lower and upper confidence limits. 
Red vertical lines = true confidence limits and the true median. 
 

Demonstration 
 
As a demonstration, the estimators derived above are applied to Utah CODES data for the years 
2003 to 2005. Crash data was probabilistically linked to hospital data using k  5  imputations.  
 
Hospital charges were then adjusted for inflation to 2008 dollars. Of all the Consumer Price 
Indices (CPI) available, the most appropriate one for adjusting hospital charges for inflation is 
called Hospital Services (not to be confused with Hospital and Related Services) (Katz & 
Crawford, 2009). This is the CPI index that is used here. Missing hospital charges were then 
imputed using 1 imputation, thus preserving the total number of imputations at k  5 .  
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Note that charges were first adjusted for inflation and then imputed. This is the correct order, 
since it only makes sense to impute a variable if all of its values are in the same units. Adjusting 
for inflation causes all the values to be in the units of 2008 dollars. 
 
The sample median was $0.00. The estimates of the median, both using the MLE method and the 
asymptotic MLE method was $0.01. The median was zero because about 86% of the people in 
the dataset were unlinked to a hospital record. Because of this, the imputation procedure for 
hospital charges assigned zero charges to them. 
 
Next, let’s considered only the people who were linked to a hospital record. The median 
estimates were as follows: 

 MLE 
o Median: $1049 
o 95% confidence interval: $1036 to $1062 

 Asymptotic MLE 
o Median: $1049 
o 95% confidence interval: $1032 to $1065 

 
The sample median was $791.  
 
The sample median was much lower than the estimate of the population median. Thus, using 
sample median as an estimate of the population median would have produced a large error. 
 
The confidence interval for the MLE was slightly asymmetric. The lower limit was $12.92 below 
the point estimate, while the upper limit was $13.08 above it. As discussed above, an asymmetric 
confidence interval for the median of hospital charges makes sense. 
 
The confidence interval for the asymptotic MLE was wider than for MLE. This is consistent with 
the simulations discussed in the previous section. 
 

Conclusion 
 
This report has developed a useful estimator of the median of hospital charges. The estimator 
gives both a point estimate as well as a confidence interval. It performs well in simulations. 
Notably, in simulations, the calculated confidence interval contained the true median with the 
appropriate probability. In application to real data, the estimator gives a result that’s very 
different from the sample median. This indicates that using the sample median to estimate the 
median would produce a large error.  
 
Note again that when working with hospital charges, they should be adjusted for inflation before 
being imputed.  
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Appendix: Asymptotic MLE 
 
This appendix details how to calculate the asymptotic MLE of the median. Since the asymptotic 
MLE is an approximation of the MLE that is only valid for large sample sizes, and since the 
actual MLE of the median has been derived above in equations 9 and 10, there is no need to use 
this asymptotic MLE in practice. 
 
Schafer (1997, pp. 108-110), citing Rubin (1987), gives a procedure for combining estimators 
based on multiply imputed data. The procedure can only be applied to estimators that are 
normally distributed. Thus, since MLEs are asymptotically normal, the procedure can be applied 
to MLEs, but only when the sample size approaches infinity. In general, the procedure cannot be 
applied to MLEs when the sample size is small. 
 

The procedure is as follows. Let   be the parameter of interest. Let ̂ j  be a normally distributed 

estimator of   conditional on dataset j . Then, the point estimator of   conditional on all the 
data is  
 
~ 1  ̂

k j    (15). 
j

 
Note the use of a tilde to indicate an asymptotic MLE. 
 

~
Likewise, let û 2  be the estimated variance of ̂ ~

j j .  Then the estimated variance of   is u 2 , 

where 
 

~u 2 1
W   û 2

k j   (16) 
j

~ 2 k 1
uB 

  ~ˆ 2


k j    (17)  k 1 j

~u 2  ~ 2 ~uW  u 2
B   (18). 

 
Finally, the 100 1 %  confidence interval for   under this procedure is 
 

 ~u
22 

   k 1 1
W

~


2    (19) 
uB 

~   ~CI    t  ,1 0.5 u 2  (20), 
 
where t , p is the Student’s t quantile function with   degrees of freedom.  
 
One objection to the estimator in equations 9 and 10 is that it is not of the form given in 
equations 15 and 20. The response is that the derivation of the MLE in equations 9 and 10 did 
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not rely on asymptotic arguments. Thus, that is the best estimator, even in small samples. The 
estimator in equations 15 and 20 is equivalent, but only as the sample size approaches infinity. In 
other words, it’s an asymptotic MLE.  
 
Though the MLE in equations 9 and 10 should be used to estimate the median, the asymptotic 
MLE based on equations 15 and 20 is given below, for reference.  
 
Combining equations 1 and 7 gives the MLE of the median of X  conditional on dataset j : 
 

 1 
m̂ j  exp  ln xij    (21). 

 n i 
 
Note that the estimator of the median is clearly not normally distributed. To see this, consider the 
case when n  1. In that case, the estimator has the same distribution as X , which is log-normal. 
However, since the estimator is an MLE, its distribution approaches the normal distribution as 
the sample size n  approaches infinity.  
 
Based on this and on equation 15, the asymptotic MLE of the median is 
 

~ 1
m    1 

exp ln x
k ij   (22). 

j i n 
 
According to David (1970), the following is an asymptotic approximation of the variance of the 
median  
 

u 2 1
   (23), 

4nf 2  m
 
where f  x  is the probability density function (pdf) of X . Recall that the pdf of the log-normal 
distribution is  
 

1   ln x   2 
f  x  exp   (24). 

x 2  2 2


 
Substituting equations 7 and 24 into equation 23 gives the asymptotic variance of the median of 
the log-normal distribution: 
 

2 
u  0.5 exp 2  2   (25). 

n
 
Substituting equation 3 into the above gives the asymptotic MLE of the variance of the estimator 
of median conditional on dataset j : 
 

 
           NHTSA’s National Center for Statistics and Analysis, 1200 New Jersey Avenue SE., Washington, DC 20590 

 
13



 

~u 2 
0.5 exp 2 ˆ ln ˆ 2

j     
2 j xij  

n j   (26). 
i

 
This is used to construct the confidence interval for the median as shown in equation 20 and 
preceding equations.   
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