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1. Introduction 

 

The National Highway Traffic Safety Administration developed and implemented the National 

Automotive Sampling System in the 1970s to make estimates of the motor vehicle crash 

experience in the United States. In 1988 NHTSA split the NASS into two surveys, the General 

Estimates System and the Crashworthiness Data System. Since then, the same data collection sites 

have been used for GES data collection. Given the shifts in population and the vehicle fleet, and 

the changing  analytic needs of the safety community, the U.S. Congress authorized NHTSA to 

modernize its crash data collection system. 

 

NHTSA implemented two new annual surveys: the Crash Report Sampling System that replaced 

the GES, and the Crash Investigation Sampling System that replaced the CDS.  

 

This document provides an overview of the CRSS sample design and weighting procedure, and  

describes some basic concepts on analysis of complex survey data. In addition, it provides 

examples to show how to make estimates using CRSS and GES data and discusses issues related 

to CRSS data analysis. Finally, this document catalogs frequently asked questions on sampling 

and estimation as they apply to GES/CRSS and the Fatality Analysis Reporting System. 

 

While this document provides a broad overview of the design of CRSS, a supplemental NHTSA 

technical report, Crash Record Sampling System: Sample Design and Estimation (Zhang, Noh, 

Subramanian, & Chen, in press) to be published by NHTSA will illustrate the CRSS sample 

design and weighting procedures in greater detail. 
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2. The CRSS Sample Design  
 

CRSS was designed independent of other NHTSA surveys. The target population for the CRSS is 

the same as that for the GES: all police-reported motor vehicle crashes on trafficways. Because a 

nationwide direct selection of PARs is currently infeasible, the CRSS PAR sample is selected in 

multiple stages to produce a nationally representative probability sample.  

 

At the first stage of selection, 3,117 counties in the United States were grouped into 707 primary 

sampling units. A PSU in the CRSS is either a county or a group of counties. U.S. territories, some 

remote counties in Alaska, and small islands of Hawaii were excluded.  

 

The 707 PSUs in the PSU frame (the collection of all PSUs) were stratified into 50 strata by the 

four Census regions, urban/rural, vehicle miles traveled, total number of crashes, total truck miles 

traveled, and road miles. Each of the 707 PSUs in the frame was assigned a measure of size (MOS) 

equal to the combination of its estimated nine types of crash counts defined in Table 1 below. First, 

101 PSUs were selected by a stratified probability proportional-to-size sampling method. Then a 

sequence of sub-samples was selected from the 101 PSU sample, and in this process the strata 

were collapsed if necessary. This produced a sequence of nested PSU samples with decreasing 

sample sizes selected from the collapsed strata. These nested PSU samples allow NHTSA to 

change the PSU sample size without reselecting the sample in the future. Therefore, the final PSU 

sample was the result of a multiphase sampling, and the PSU sample was selected in such a way 

that the resulting selection probability was still approximately PPS.  

 

For the 2016 CRSS, 60 PSUs were selected from 24 PSU strata. Due to the non-response of 7 

PSUs, CRSS data were collected from 53 PSUs. A PSU level non-response adjustment was applied 

to mitigate the potential non-response bias.  

 

The secondary sampling units  are police jurisdictions. Within each selected PSU, PJs were 

stratified into three PJ strata by their estimated measure of size which is a combination of crash 

counts in six categories of interest. The Pareto sampling method was used to select PJ samples 

from each PJ stratum. The Pareto sampling method produces overlapping samples when a new 

sample is reselected. This reduces the changes to the existing PJ sample if a new PJ sample would 
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need to be selected because of PJ frame (the collecton of all PJs in the selected PSU) changes. The 

PJ inclusion probability under the Pareto sampling is approximately PPS (Rosén, 1997). Across 

the 53 responding PSUs, a total of 350 PJs was selected and 337 PJs cooperated in 2016. Weight 

adjustments were made to mitigate the potential bias caused by the 13 non-responding PJs. 

 

The tertiary sampling units are PARs. CRSS Data collectors periodically receive PARs from the 

selected PJs. All new PARs are sequentially stratified in the order they become available into nine 

PAR strata (see Table 1 below). These nine PAR strata were formed based on the results of 

NHTSA’s internal data needs and public data needs studies. The PAR stratification is used to over-

sample the following important analysis domains to ensure enough cases are selected into the 

sample: 

 Crashes involving killed or injured pedestrians; 

 Crashes involving killed or injured motorcycle occupants;  

 Crashes involving killed or injured occupants in a late model year passenger vehicle; and 

 Crashes involving killed or severely injured occupants in a non-late-model-year passenger 

vehicle.  

From each PAR stratum, a systematic sampling method is used to select the PAR sample. The 

sampling intervals are determined in such a way that the final weights are approximately equal for 

all the PARs in the same PAR stratum in order to reduce the sampling variance for the domain 

estimates. The target PAR sample size is around 50,000 every year.  

 

See Crash Record Sampling System: Sample Design and Estimation, (Zhang, Noh, Subramanian, 

& Chen, in press) for more detailed information on CRSS sample design.  
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Table 1: 2016 CRSS Weighted and Unweighted Estimates of Crash Distribution by PAR Strata 

CRSS 

PAR Strata 
PAR Strata Description 

Unweighted 

Distribution1 

(percent) 

Resulting 

Sample 

Allocation 

Unweighted 

Standard 

Error 

(percent) 

Weighted 

Distribution 

(percent) 

Weighted 

Standard 

Error 

(percent) 

2 

Crashes not in Stratum 1 that: 

• Involves a killed or injured 

(includes injury severity 

unknown) non-motorist 

8.26 0.13 2.11 0.19 

3 

Crashes not in Stratum 1 or 2 that: 

• Involves a killed or injured 

(includes injury severity 

unknown) motorcycle or moped 

rider 

5.00 0.10 1.31 0.08 

4 

Crashes not in Stratum 1-3 that: 

• At least one occupant of a late 

model year2 passenger vehicle is 

killed or incapacitated 

2.87 0.08 0.42 0.04 

5 

Crashes not in Stratum 1-4 that: 

• At least one occupant of an older3 

passenger vehicle is killed or 

incapacitated 

6.33 0.11 1.50 0.15 

6 

Crashes not in Stratum 1-5 that: 

• at least one occupant of a late 

model year passenger vehicle is 

injured (including injury severity 

unknown) 

15.70 0.17 7.39 0.39 

7 

Crashes not in Stratum 1-6 that: 

• involved at least one medium or 

heavy truck or bus (includes 

school bus, transit bus, and motor 

coach) with GVWR 10,000 lbs. or 

more 

5.48 0.10 6.26 0.18 

8 

Crashes not in Stratum 1-7 that: 

• at least one occupant of an older 

passenger vehicle is injured 

(including injury severity 

unknown) 

13.36 0.16 14.89 0.43 

9 

Crashes not in Stratum 1-8 that: 

• involved at least one late model 

year passenger vehicle, AND 

• No person in the crash is killed or 

injured 

22.51 0.19 29.10 0.86 

10 

Crashes not in Stratum 1-9: 

This includes mostly PDO* crashes involving 

a non-motorist, motorcycle, moped, and 

passenger vehicles that are not late model year 

and any crashes not classified in strata 1-9. 

20.50 0.19 37.03 0.82 

*: PDO: Property damage only.   

                                                 
1 The unweighted estimates ignored the sample design and the weights. 
2 Late model year vehicle: vehicle that is no more than 4 year old. 
3 Older vehicle: vehicle that is more than 4 year old. 
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3.  CRSS Weighting Procedures 

 

The CRSS sample is the result of probability sampling featuring stratification, clustering, and 

selection with unequal probabilities. Because of these features, the CRSS sample is not a simple 

random sample and users need to use proper weights to produce unbiased and robust estimates. 

The 2016 CRSS weights were created as follows: 

 Calculate the base weights (the inverse of selection probabilities) at all three stages (PSU, 

PJ, and PAR).  

 Adjust the base weights for non-response4 at all three stages to correct potential non-

response bias. 

 Calibrate the PJ and the PAR weights using the PSU level total PAR stratum counts to 

further correct potential non-response bias and coverage bias.  

 Adjust the weights for duplicates. 

The final weight variable for the CRSS estimation is WEIGHT. See , (Zhang, Noh, Subramanian, 

& Chen, in press) for more detailed information on the CRSS weighting procedure.  

  

                                                 
4 Non-responding PARs are incomplete PARs or non-readable PARs. Non-responding PJs and PSUs are PJs and 

PSUs refused to cooperate.  
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4. Basic Concepts of Complex Survey Data Analysis 

 

4.1 Model Parameter Estimation  

 

In standard statistical theory, we often assume that the data generated by nature or by a laboratory 

experiment follows a stochastic model. The model parameter that indexes the underlining model 

is of interest and needs to be estimated. For example, consider fatal indicators {𝑦1, 𝑦2, … , 𝑦𝑁}: 

 

𝑦𝑘 = {
1, 𝑓𝑎𝑡𝑎𝑙  𝑐𝑟𝑎𝑠ℎ       
0,   𝑛𝑜𝑛𝑓𝑎𝑡𝑎𝑙 𝑐𝑟𝑎𝑠ℎ

 , 𝑘 = 1, 2, …𝑁 

 

observed from the 𝑁 crashes reported in the year 2016. One may view these observations as 

outcomes of independent and identical Bernoulli trials indexed by model parameter 𝜃:  

 

𝑦𝑘~𝐵𝑒𝑟𝑛(𝜃),   𝑘 = 1, 2, …𝑁   

 

And use the maximum likelihood estimator: 

 

𝜃𝑁 =
1

𝑁
∑ 𝑦𝑘

𝑁

𝑘=1
 

 

to estimate the model parameter 𝜃. If this model is correct, 𝜃𝑁 is unbiased with respect to the 

model for 𝜃: 

 

𝐸𝐵𝑒𝑟𝑛(𝜃𝑁) =
1

𝑁
∑ 𝐸𝐵𝑒𝑟𝑛

𝑁

𝑘=1
(𝑦𝑘) =  𝜃 

 

with variance: 

 

𝑉𝑎𝑟𝐵𝑒𝑟𝑛(𝜃𝑁) =
1

𝑁2
∑ 𝑉𝑎𝑟𝐵𝑒𝑟𝑛

𝑁

𝑘=1
(𝑦𝑘) =

𝜃(1 − 𝜃)

𝑁
= 𝑂(𝑁−1). 

 

Here 𝐸𝐵𝑒𝑟𝑛 and 𝑉𝑎𝑟𝐵𝑒𝑟𝑛 are the expectation and variance with respect to model 𝐵𝑒𝑟𝑛(𝜃). Notice 

when 𝑁 is very large, the model variance 𝑉𝑎𝑟𝐵𝑒𝑟𝑛(𝜃𝑁) becomes very small.  
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4.2 Finite Population Parameter Estimation 

 

In the previous section, the model parameter 𝜃 is estimated by: 

 

𝜃𝑁 =
1

𝑁
∑ 𝑦𝑘

𝑁

𝑘=1
. 

 

However, the quantity 𝜃𝑁 = ∑ 𝑦𝑘
𝑁
𝑘=1 𝑁⁄  itself is also of interest because it gives a snapshot of the 

nation’s fatal crash proportion at year 2016. Similar statistics include 𝑁 (2016 total number of 

crashes) and ∑ 𝑦𝑘
𝑁
𝑘=1  (2016 total number of fatal crashes) etc. In other words, in addition to model 

parameters, we may also be interested in the functions of a set of realized (fixed) values. For 

example, the collection of all realized 2016 crashes 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑁} can be viewed as a finite 

population. The functions of the attributes of the finite population, such as 𝜃𝑁, 𝑁, and ∑ 𝑦𝑘
𝑁
𝑘=1  are 

called finite population parameters.  

 

Unfortunately, it is often cost-prohibitive to observe all the units in the finite population. Instead, 

a probability sample is selected and observed to estimate the finite population parameters.  

 

A probability sample 𝑠 is a subset of the finite population 𝑈 selected under a probability sampling 

design. The key role of the probability sampling design is to define a probability space on 𝑈 so we 

can use the sample 𝑠 to estimate and make inferences about the finite population parameters. 

Chapters 2 and 3 briefly described how a probability sample of PARs was selected from a finite 

population of PARs for CRSS data collection and how the final CRSS weights were calculated.  

 

It should be noted that for various reasons, it is inevitable to use design features such as 

stratification, clustering, and unequal selection probabilities to select the probability sample. For 

example, cluster sampling was used because it was too costly to obtain all PARs in the US to 

directly select a PAR sample. PARs in important analysis domains were assigned larger selection 

probabilities to ensure enough sample sizes for analysis. Stratification was used at all stages to 

reduce the sampling variance and assign different selection probabilities. These design features 

might induce a stochastic dependence among the resulting observations and alter the original 

distribution. As a result, the final sample is not a simple random sample, and the sampled 

observations may no longer follow the same model as the population from which they were drawn.  
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Under a probability sampling design, every unit 𝑢𝑘 in the finite population 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑁 } 

has a positive probability 𝜋𝑘  of being selected into the sample 𝑠 . Assume sample 𝑠 =

{𝑢1, 𝑢2, … , 𝑢𝑛 } has fixed sample size 𝑛 ≤ 𝑁 and define the selection indicator as: 

 

𝐼𝑘 = {
1,   𝑖𝑓 𝑢𝑘 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑡𝑜 𝑠
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        

 (𝑘 = 1,2, … , 𝑁) 

 

The inverse of the inclusion probability 𝑤𝑘 = 1 𝜋𝑘⁄  can be used to construct design-based point 

estimators of finite population parameters (i.e., they are unbiased or nearly unbiased under the 

probability-sampling design). For example, let the fatal indicator 𝑦𝑘 be an attribute observed 

from crash 𝑢𝑘, then 

𝜃𝑛 =
1

𝑁
∑ 𝑤𝑘𝑦𝑘
𝑢𝑘∈𝑠

 

 

is design unbiased for the 2016 fatality proportion: 𝜃𝑁 = ∑ 𝑦𝑘
𝑁
𝑘=1 𝑁⁄ : 

𝐸𝐷(𝜃𝑛) = 𝐸𝐷 (
1

𝑁
∑ 𝑤𝑘𝑦𝑘
𝑢𝑘∈𝑠

) = 𝐸𝐷 (
1

𝑁
∑ 𝑤𝑘𝐼𝑘𝑦𝑘

𝑁

𝑘=1
) =

1

𝑁
∑ 𝑦𝑘

𝑁

𝑘=1
= 𝜃𝑁 

 

Here the expectation 𝐸𝐷 is with respect to the probability space defined by the sampling design.  

The sampling/design variance of 𝜃𝑛 , 𝑉𝑎𝑟𝐷(𝜃𝑛), is the variance of estimator 𝜃𝑛  under repeated 

probability sampling. 𝑉𝑎𝑟𝐷(𝜃𝑛) depends on both the estimator 𝜃𝑛 and the sample design. It should 

be noted that the point estimator 𝜃𝑛  is design unbiased for the finite population parameter 𝜃𝑁 

regardless of whether the model assumed to generate the finite population is true or not. 

4.3 Two-Step Sampling Procedure 

 

Combining the concepts in the two previous sections, survey data can be viewed as the result of 

the following two step sampling procedure (Hartley and Sielken, 1975):  

 Step 1: A finite population 𝑈 of size 𝑁 is generated by an infinite super-population model 

ξ.  

 Step 2: A probability sample 𝑠 of size 𝑛 ≤ 𝑁 is selected from the finite population 𝑈.  

That is: 

𝑀𝑜𝑑𝑒𝑙 ξ  
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
⇒          𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑁 }  

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛
⇒         𝑠 = {𝑢1, 𝑢2, … , 𝑢𝑛 } 
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Under this two-step sampling view, the design unbiased point estimator is not only an unbiased 

estimator of the finite population parameter 𝜃𝑁 under the probability based design, but also an 

unbiased estimator of the super-population model parameter 𝜃 if the (assumed) model is correct:  

 

𝐸𝜉𝐷(𝜃𝑛) = 𝐸𝜉[𝐸𝐷(𝜃𝑛)] = 𝐸𝜉[𝜃𝑁] = 𝜃 

 

Here the expectation 𝐸𝜉𝐷 is with respect to the two-step sampling process: the data generation by 

the model and the sample selection by the sample design. The total variance of a design unbiased 

point estimator 𝜃𝑛 under this two-step sampling view can be decomposed as: 

 

𝑉𝑎𝑟𝜉𝐷(𝜃𝑛) = 𝐸𝜉[𝑉𝑎𝑟𝐷(𝜃𝑛)] + 𝑉𝑎𝑟𝜉[𝐸𝐷(𝜃𝑛)] 

 

Since 𝐸𝐷(𝜃𝑛) = 𝜃𝑁  and 𝑉𝑎𝑟𝜉(𝜃𝑁) = 𝑂(𝑁
−1), therefore 𝑉𝑎𝑟𝜉[𝐸𝐷(𝜃𝑛)] = 𝑉𝑎𝑟𝜉[𝜃𝑁] = 𝑂(𝑁

−1). 

So, when the finite population size 𝑁 is large, the second term on the right is negligible. Therefore, 

if 𝑣𝑎�̂�𝐷(𝜃𝑛) is a design unbiased estimator of 𝑉𝑎𝑟𝐷(𝜃𝑛), then it can also serve as an approximate 

estimator of the total variance when 𝑁 is large: 

 

𝑣𝑎�̂�𝜉𝐷(𝜃𝑛) ≈ 𝑣𝑎�̂�𝐷(𝜃𝑛) 

 

In summary, a design unbiased or nearly design unbiased point estimator can be used to estimate 

the finite population parameter regardless if the super-population model is correct or not. If the 

super-population model is correctly specified and the finite population parameter is unbiased with 

respect to the model for the model parameter, then the design unbiased estimator can also be used 

to estimate the model parameter. The design unbiased variance estimator for the design unbiased 

point estimator not only can be used to estimate the design variance of the design unbiased 

estimator, but also can be used to estimate its total variance when the finite population size is large.  

 

In most of our analysis, the finite population size 𝑁 is indeed very large, therefore, from now on 

we only consider design unbiased or approximately design unbiased point estimators and their 

design variance estimators.  
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4.4 Design-Unbiased Point Estimator 

 

Probability sampling defines a probability space so that the inclusion probability 𝜋𝑘  for each 

sampled unit 𝑘 can be derived and its inverse 𝑤𝑘 = 1 𝜋𝑘⁄  can be used to weight the data to obtain 

(approximately) design unbiased estimators. The design-unbiased point estimator is robust 

because it is unbiased for the finite population parameter whether the super-population model that 

generated the finite population is true or not.  

 

Unweighted estimators, on the other hand, may incur severe bias. In Table 1 for example, the 

unweighted crash distribution by PAR strata estimated from the 2016 CRSS sample, which is 

simply the 2016 CRSS sample allocation to the PAR strata, is quite different from the weighted 

distribution, which is an unbiased estimate of the actual crash distribution of all 2016 crashes by 

PAR strata. 

4.5 Design Variance Estimation 

 

The impact of the sample design must be recognized when one estimates 𝑉𝑎𝑟𝐷(𝜃𝑛). In Table 1, 

the unweighted standard errors ignored weights and the sample design. The weighted standard 

errors take the sample design (including the weights) into account. Table 1 shows ignoring the 

sample design may cause severe bias to the standard error estimates too. 

 

Estimation methods and computer software have been developed to estimate 𝑉𝑎𝑟𝐷(𝜃𝑛) . 

Specialized procedures for complex survey data analysis, such as SAS PROC SURVEY 

procedures and SUDAAN procedures, should be used for CRSS data analysis along with proper 

design statements. Because of the small CRSS PSU sampling fractions, the with-replacement 

design option can be used for CRSS data analysis.  

 

Different variance estimation methods (for example, the Jackknife variance estimation method and 

the Taylor series method) can be used to estimate the standard errors of CRSS estimates. We 

choose to use Jackknife variance estimation method because our simulation study indicates it 

produces less biased variance estimates for small domain estimates. See Wolter (2007) for more 

information about design variance estimation under a complex sample design.  
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5. Estimation Examples 

 

The following examples demonstrate how to use SAS or SUDAAN to calculate CRSS estimates.  

 

 Example 1: Single-year CRSS estimates using SAS and SUDAAN.  

 Example 2: Combining multiple years of GES and CRSS data: year-to-year comparisons 

and significance tests using SUDAAN.  

 Example 3: Composite estimates by combining estimates from FARS and CRSS.  

 Example 4: Domain estimates using SAS and SUDAAN.  

5.1 Example 1: Single Year CRSS Estimates Using SAS and SUDAAN 

 

The following SAS and SAS-callable SUDAAN programs show how design options are specified 

to make single year CRSS estimates. We choose Jackknife variance estimation method as the 

variance estimation method in SAS and SAS-callable SUDAAN programs. This also implicitly 

assumes the PSUs were selected with replacement or (in our case) with a low sampling rate. We 

let the software to generate the Jackknife replicate weights.  

 

Variable PSUSTRAT defines the PSU strata, and PSU_VAR identifies PSUs for variance estimation 

purpose. In the 2016 CRSS, seven PSUs did not cooperate (refused NHTSA’s access to their crash 

reports). This left some PSU strata with only one responding PSU. In the variable PSUSTRAT, 

these single PSU strata were collapsed with other strata to ensure at least two PSUs per stratum 

for variance estimation. Also, at the CRSS PSU sampling stage, one PSU was selected with 

certainty because of its large number of crashes. A certainty PSU is in fact a stratum therefore it is 

treated as a stratum in PSUSTRAT. Variable PSU_VAR identifies sampled PSUs. The PJs selected 

in the certainty PSU are treated as PSUs in PSU_VAR.  

 

The final CRSS  weight variable, WEIGHT, should be used in a weight statement. The input data 

file IMPUTED.ACCIDENT is the 2016 CRSS crash record data file with imputed variables. The 

following are the SAS and SUDAAN programs and major outputs. 

 

  



 

 
12 

/*SAS Example*/ 

PROC SURVEYFREQ DATA=IMPUTED.ACCIDENT VARMETHOD=JK; 

 STRATA PSUSTRAT; 

 CLUSTER PSU_VAR; 

 TABLES MAXSEV_IM; 

 WEIGHT WEIGHT; 

 FORMAT MAXSEV_IM MAXSEV.; 

 RUN; 

 

Table 2: Single year CRSS estimates - SAS Output: 
 

 

IMPUTED MAXIMUM INJURY IN CRASH 

MAXSEV_IM Frequency Weighted 

Frequency 

Std Dev of 

Wgt Freq 

Percent Std Err of 

Percent 

No Injury 22,173 5,061,234 322,636 69.5558 1.0245 

Possible Injury 11,225 1,225,708 92,157 16.8447 0.8465 

Minor Injury 7,837 736,922 59,854 10.1274 0.5857 

Serious Injury 4,971 182,389 18,669 2.5066 0.1992 

Fatal 965 34,415 3,141 0.4730 0.0389 

Injured, Unknown 326 32,181 13,723 0.4423 0.1915 

Died before Crash 2 128.43840 95.82211 0.0018 0.0013 

No Person Involved 16 3,526 942.05003 0.0485 0.0124 

Total 47,515 7,276,505 438,260 100.000   
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/*SAS-Callable SUDAAN Example*/ 

PROC CROSSTAB DATA=IMPUTED.ACCIDENT DESIGN=JACKKNIFE NOTSORTED; 

 NEST  PSUSTRAT PSU_VAR; 

 WEIGHT WEIGHT; 

 TABLES MAXSEV_IM; 

 CLASS MAXSEV_IM; 

 SETENV ROWWIDTH=12 COLWIDTH=12 LABWIDTH=12; 

 PRINT  NSUM="SAMSIZE" WSUM="POPSIZE" SEWGT="POP SE"  

   / NSUMFMT=F6.0 WSUMFMT=F8.0 SEWGTFMT=F8.0; 

 RFORMAT MAXSEV_IM MAXSEV.; 

 RUN; 

 

Table 3: Single year CRSS estimates – SAS-Callable SUDAAN Output: 

 
IMPUTED MAXIMUM INJURY IN CRASH. 

 
------------------------------------------------------------------------------------------ 
|              |                  | IMPUTED MAXIMUM INJURY IN CRASH                      | 
|              |                  |------------------------------------------------------| 
|              |                  | Total    | No       | Possible | Minor    | Serious  | 
|              |                  |          | Injury   | Injury   | Injury   | Injury   | 
------------------------------------------------------------------------------------------ 
|              |                  |          |          |          |          |          | 
|              | SAMSIZE          |   47,515 |   22,173 |   11,225 |    7,837 |    4,971 | 
|              | POPSIZE          |7,276,505 |5,061,234 |1,225,708 |  736,922 |  182,389 | 
|              | POP SE           |  438,260 |  322,636 |   92,157 |   59,854 |   18,669 | 
------------------------------------------------------------------------------------------ 
 
------------------------------------------------------------------------------- 
|              |                  | IMPUTED MAXIMUM INJURY IN CRASH           | 
|              |                  |-------------------------------------------| 
|              |                  | Fatal    | Injured, | Died     | No       | 
|              |                  |          | Unknown  | before   | Person   | 
|              |                  |          |          | Crash    | Involved | 
------------------------------------------------------------------------------- 
|              |                  |          |          |          |          | 
|              | SAMSIZE          |      965 |      326 |        2 |       16 | 
|              | POPSIZE          |   34,415 |   32,181 |      128 |    3,526 | 
|              | POP SE           |    3,141 |   13,723 |       96 |      942 | 
------------------------------------------------------------------------------- 
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5.2 Example 2: Combining Multiple Years of GES and CRSS Data  

 

Combining multiple years of data allows us to make year-to-year comparisons and make better 

small domain estimates. In this example, multiple years of GES data are combined with 2016 

CRSS data. The same approach is also applicable to combining multiple years of GES data with 

multiple years of CRSS data.  

 

Over the years, NHTSA has noticed some GES estimates might be biased. For example, the 2015 

GES fatal crash estimate (21,255 with standard error 1,474) is significantly lower than the 2015 

FARS fatal count (32,166). It should be noted the difference between a CRSS estimate and a 

biased GES estimate may be confounded by the GES bias. To see this, consider the following 

bias model for the 2015 GES total crash estimate: 

 

�̂�2015
𝐺𝐸𝑆 = 𝑡2015 ∗ (1 + 𝐵2015

𝐺𝐸𝑆 ) ∗ 𝑒2015
𝐺𝐸𝑆  

where:  

 �̂�2015
𝐺𝐸𝑆  is the 2015 GES total crash estimate; 

 𝑡2015 is the 2015 true total crash count; 

 𝑒2015
𝐺𝐸𝑆  is the multiplicative error term: 𝐸(𝑒2015

𝐺𝐸𝑆 ) = 1; 

 𝐵2015
𝐺𝐸𝑆 = [𝐸(�̂�2015

𝐺𝐸𝑆 ) − 𝑡2015] 𝑡2015⁄  is the relative bias of the 2015 GES total crash 

estimate. 

Also, assume the 2016 CRSS total crash estimate is unbiased and: 

�̂�2016
𝐶𝑅𝑆𝑆 = 𝑡2016 ∗ 𝑒2016

𝐶𝑅𝑆𝑆 

where:  

 �̂�2016
𝐶𝑅𝑆𝑆 is the unbiased 2016 CRSS total crash estimate; 

 𝑡2016 is the 2016 true total crash count; 

 𝑒2016
𝐶𝑅𝑆𝑆 is the multiplicative error term: 𝐸(𝑒2016

𝐶𝑅𝑆𝑆) = 1.  

The percent change �̂� in the total crash estimate from 2015 to 2016 can be expressed as: 

�̂� =
�̂�2016
𝐶𝑅𝑆𝑆

�̂�2015
𝐺𝐸𝑆 − 1 

Therefore, 

𝐸(�̂�) ≈
𝑡2016

𝑡2015 ∗ (1 + 𝐵2015
𝐺𝐸𝑆 )

− 1 ≠
𝑡2016
𝑡2015

− 1 
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It can be inferred that the percent change is confounded by the relative bias. 

 

Similarly, the change �̂� in total crash estimates from 2015 to 2016 is: 

�̂� = �̂�2016
𝐶𝑅𝑆𝑆 − �̂�2015

𝐺𝐸𝑆  

                                       = 𝑡2016 ∗ 𝑒2016
𝐶𝑅𝑆𝑆 − 𝑡2015 ∗ (1 + 𝐵2015

𝐺𝐸𝑆 ) ∗ 𝑒2015
𝐺𝐸𝑆  

 

Therefore,  

𝐸(�̂�) = (𝑡2016 − 𝑡2015) − 𝑡2015𝐵2015
𝐺𝐸𝑆 ≠ 𝑡2016 − 𝑡2015 

 

In other words, if GES estimate is biased, then the change from GES estimate to CRSS estimate 

is confounded by the GES bias. A significance test on the difference estimate �̂� is testing 

whether (𝑡2016 − 𝑡2015) − 𝑡2015𝐵2015
𝐺𝐸𝑆  is zero instead of testing whether 𝑡2016 − 𝑡2015 is zero. 

This demonstrates why comparisons between CRSS and GES should be performed with caution.  

 

However, the comparison among GES estimates is less likely to be confounded by the potential 

GES bias. To see this, let: 

�̂�2014
𝐺𝐸𝑆 = 𝑡2014 ∗ (1 + 𝐵2014

𝐺𝐸𝑆 ) ∗ 𝑒2014
𝐺𝐸𝑆  

where:  

 �̂�2014
𝐺𝐸𝑆  is the 2014 GES total crash estimate; 

 𝑡2014 is the 2014 true total crash count; 

  𝐸(𝑒2014
𝐺𝐸𝑆 ) = 1  

 𝐵2014
𝐺𝐸𝑆 = [𝐸(�̂�2014

𝐺𝐸𝑆 ) − 𝑡2014] 𝑡2014⁄  is the relative bias of 2014 GES total crash 

estimate; 

Now the percent change �̂� in the total crash estimate from 2014 to 2015 can be expressed as: 

 

�̂� =
�̂�2015
𝐺𝐸𝑆

�̂�2014
𝐺𝐸𝑆 − 1 

 

Notice for the same estimator of the same study variable under the same sample design, the same 

data collection operation and the same weighting procedure, the relative biases tend to similar, 

i.e., 𝐵2015
𝐺𝐸𝑆 ≈ 𝐵2014

𝐺𝐸𝑆 , therefore, 
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𝐸(�̂�) ≈
𝑡2015 ∗ (1 + 𝐵2015

𝐺𝐸𝑆 )

𝑡2014 ∗ (1 + 𝐵2014
𝐺𝐸𝑆 )

− 1 ≈
𝑡2015
𝑡2014

− 1 

 

Similarly, the difference between the 2015 GES total crash estimate and the 2014 GES total 

crash estimate can be expressed as: 

 

�̂� = �̂�2015
𝐺𝐸𝑆 − �̂�2014

𝐺𝐸𝑆   

    = 𝑡2015 ∗ (1 + 𝐵2015
𝐺𝐸𝑆 ) ∗ 𝑒2015

𝐺𝐸𝑆 − 𝑡2014 ∗ (1 + 𝐵2014
𝐺𝐸𝑆 ) ∗ 𝑒2014

𝐺𝐸𝑆   

 

Since (1 + 𝐵2015
𝐺𝐸𝑆 ) ≈ (1 + 𝐵2014

𝐺𝐸𝑆 ), we have: 

 

𝐸(�̂�) = 𝑡2015 ∗ (1 + 𝐵2015
𝐺𝐸𝑆 ) − 𝑡2014 ∗ (1 + 𝐵2014

𝐺𝐸𝑆 ) ≈ (𝑡2015 − 𝑡2014)(1 + 𝐵2015
𝐺𝐸𝑆 ) 

 

Although the difference estimate is biased by a factor (1 + 𝐵2015
𝐺𝐸𝑆 ), a significance test on the 

difference estimate is still testing whether (𝑡2015 − 𝑡2014) is significantly different from zero as 

long as the relative bias 𝐵2015
𝐺𝐸𝑆 ≠ −100%.  

 

In summary, comparisons among GES estimates or among CRSS estimates are less likely 

confounded by the bias. Comparison between CRSS and GES should be performed with caution.  

 

CRSS sample selection is independent from GES sample selection. To capture this independence, 

a new stratification variable STUDY (STUDY=1 for GES and STUDY=2 for CRSS) is created. 

Annual samples within GES (or annual samples within CRSS in the future) are not independent 

samples because the same PSU and PJ samples are used for data collection. A domain (sub-

population) identification variable YEAR is created to make year-to-year comparisons.  

 

In the following SAS program, two years of GES data (2014 and 2015) are combined with 2016 

CRSS data. First, annual crash counts by crash severity are estimated. Then pairwise comparisons 

are made between the annual estimates. Both analyses were implemented by SAS callable 

SUDAAN procedures.  

 

In the data step, STUDY=1 for GES, and 2 for CRSS. Variable YEAR has three categories: 2014, 

2015, and 2016. The two GES certainty PSUs (13 and 14) were treated as strata and the sampled 

PJs in those two certainty PSUs were treated as PSUs for variance estimation purpose. 
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The SUDAAN PROC CROSSTAB procedure produces annual parameter and variance estimates 

at all levels of crash severity (CRASH_SEV). Notice variable STUDY is used as an extra 

stratification variable so that the PSU identification variable, PSU_VAR, is the third variable listed 

in the NEST statement (PSULEV=3). The SUDAAN PROC DESCRIPT procedure produces 

pairwise comparisons between the annual estimates. The following are programs and the major 

output tables from those two procedures.  

 

OPTIONS NOFMTERR PAGESIZE=70 LINESIZE=120; 

 

ODS RESULTS OFF; 

ODS LISTING; 

 

LIBNAME CRSS2016 "R:\CRSS-Archive\2016\SAS File\Final\Coded 

Cases for 53 PSUs - Imputed"; 

LIBNAME GES2015  "R:\GES\2015"; 

LIBNAME GES2014  "R:\GES\2014"; 

 

PROC FORMAT; 

 VALUE SEVERITY 1="FATAL" 2="INJURY" 3="PDO"; 

 RUN; 

 

DATA COMBINED; 

 SET CRSS2016.ACCIDENT (IN=CRSS2016)  

  GES2015.ACCIDENT  (IN=GES2015)   

  GES2014.ACCIDENT  (IN=GES2014); 

 STUDY = GES2014 + GES2015 + CRSS2016*2; 

 YEAR  = CRSS2016*2016 + GES2015*2015 + GES2014*2014;  

 IF (GES2015 OR GES2014) THEN DO; 

  IF PSUSTRAT IN (13, 14) THEN PSU_VAR=PJ; 

  ELSE PSU_VAR=PSU; 

 END; 

 IF MAXSEV_IM=4 THEN CRASH_SEV=1; /*FATAL CRASH*/ 

ELSE IF MAXSEV_IM IN (1,2,3,5) THEN CRASH_SEV=2; /*INJURY 

CRASHES*/ 

ELSE IF MAXSEV_IM IN (0,6,8) THEN CRASH_SEV=3; /*PDO 

CRASHES*/ 

 RUN; 

 

PROC CROSSTAB DATA=COMBINED FILETYPE=SAS DESIGN=JACKKNIFE 

NOTSORTED; 

 NEST  STUDY PSUSTRAT PSU_VAR / PSULEV=3; 

 WEIGHT WEIGHT; 

 CLASS  YEAR CRASH_SEV; 

 TABLES YEAR*CRASH_SEV; 
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 SETENV ROWWIDTH=20 COLWIDTH=20 LABWIDTH=40; 

 PRINT  NSUM="SAMSIZE" WSUM="TOTAL" SEWGT="SE TOTAL"  

   / NSUMFMT=F8.0 WSUMFMT=F10.0 SEWGTFMT=F9.0; 

 RFORMAT  CRASH_SEV SEVERITY.; 

 RTITLE "GES 2014, 2015 and CRSS 2016 Crash Severity 

Comparison"; 

 RUN; 

 

PROC DESCRIPT DATA=COMBINED FILETYPE=SAS DESIGN=JACKKNIFE 

NOTSORTED TOTALS; 

 NEST  STUDY PSUSTRAT PSU_VAR / PSULEV=3; 

 WEIGHT WEIGHT; 

 CLASS YEAR CRASH_SEV; 

 TABLES CRASH_SEV; 

 VAR  _ONE_; 

 PAIRWISE YEAR / NAME="YEAR TO YEAR COMPARISON"; 

 SETENV ROWWIDTH=20 COLWIDTH=20 LABWIDTH=40; 

 PRINT NSUM="SAMSIZE" TOTAL="DIFF" SETOTAL="DIFF STE"  

   LOWTOTAL UPTOTAL 

   / NSUMFMT=F10.0 TOTALFMT=F12.0 SETOTALFMT=F12.0  

     LOWTOTALFMT=F12.0 UPTOTALFMT=F12.0; 

 RFORMAT  CRASH_SEV SEVERITY.; 

 RUN; 

 

Table 4: Crash Severity Estimates (PROC CROSSTAB) 

 
Variance Estimation Method: Delete-1 Jackknife 
GES 2014, 2015 and CRSS 2016 Crash Severity Comparison 
by: Crash Date (Year), CRASH_SEV. 
 
----------------------------------------------------------------------------------------------- 
|                      |                  | CRASH_SEV                                         | 
| Crash Date (Year)    |                  |---------------------------------------------------| 
|                      |                  | Total      | FATAL      | INJURY     | PDO        | 
----------------------------------------------------------------------------------------------- 
|                      |                  |            |            |            |            | 
| Total                | SAMSIZE          |    157,623 |      2,814 |     80,747 |     74,062 | 
|                      | TOTAL            | 19,619,880 |     79,965 |  5,540,321 | 13,999,593 | 
|                      | SE TOTAL         |    910,272 |      4,590 |    235,172 |    727,134 | 
----------------------------------------------------------------------------------------------- 
|                      |                  |            |            |            |            | 
| 2014                 | SAMSIZE          |     53,030 |        895 |     27,447 |     24,688 | 
|                      | TOTAL            |  6,058,524 |     24,296 |  1,647,726 |  4,386,502 | 
|                      | SE TOTAL         |    404,124 |      2,572 |     94,199 |    329,222 | 
----------------------------------------------------------------------------------------------- 
|                      |                  |            |            |            |            | 
| 2015                 | SAMSIZE          |     57,078 |        954 |     28,941 |     27,183 | 
|                      | TOTAL            |  6,284,851 |     21,255 |  1,715,394 |  4,548,203 | 
|                      | SE TOTAL         |    402,086 |      1,474 |     95,838 |    328,529 | 
----------------------------------------------------------------------------------------------- 
|                      |                  |            |            |            |            | 
| 2016                 | SAMSIZE          |     47,515 |        965 |     24,359 |     22,191 | 
|                      | TOTAL            |  7,276,505 |     34,415 |  2,177,201 |  5,064,889 | 
|                      | SE TOTAL         |    438,260 |      3,141 |    142,291 |    322,942 | 
----------------------------------------------------------------------------------------------- 
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The 2014, 2015 and 2016 FARS fatal crash counts are 30,056, 32,166, and 34,439 respectively 

(see NHTSA’s “Traffic Safety Facts 2015” and “Traffic Safety Facts 2016”). The 2014 and 2015 

GES fatal crash estimates (24,296 with standard error 2,572 and 21,255 with standard error 1,474) 

are significantly lower than their FARS counterparts. The difference between the 2016 CRSS fatal 

estimate and the 2015 GES fatal estimate (34,415 – 21,255 = 13,160) contains the real difference 

and the bias.  

 

 

Table 5: Pairwise Comparisons by Crash Severity (PROC DESCRIPT) 

 

GES 2014, 2015 and CRSS 2016 Crash Severity Comparison 
by: Variable, CRASH_SEV, Contrast. 
 
---------------------------------------------------------------------------------------- 
|                      |                  | Contrast                                   | 
| CRASH_SEV            |                  |--------------------------------------------| 
|                      |                  | YEAR TO YEAR | YEAR TO YEAR | YEAR TO YEAR | 
|                      |                  | COMPARISON:  | COMPARISON:  | COMPARISON:  | 
|                      |                  | (2014,2015)  | (2014,2016)  | (2015,2016)  | 
---------------------------------------------------------------------------------------- 
|                      |                  |              |              |              | 
| Total                | SAMSIZE          |      110,108 |      100,545 |      104,593 | 
|                      | DIFF             |     -226,327 |   -1,217,982 |     -991,654 | 
|                      | DIFF STE         |      115,987 |      596,144 |      594,764 | 
|                      | Lower 95% Limit  |              |              |              | 
|                      |  Cntrst Total    |     -456,901 |   -2,403,076 |   -2,174,006 | 
|                      | Upper 95% Limit  |              |              |              | 
|                      |  Cntrst Total    |        4,246 |      -32,887 |      190,698 | 
---------------------------------------------------------------------------------------- 
|                      |                  |              |              |              | 
| FATAL                | SAMSIZE          |        1,849 |        1,860 |        1,919 | 
|                      | DIFF             |        3,041 |      -10,119 |      -13,161 | 
|                      | DIFF STE         |        2,526 |        4,060 |        3,470 | 
|                      | Lower 95% Limit  |              |              |              | 
|                      |  Cntrst Total    |       -1,979 |      -18,190 |      -20,058 | 
|                      | Upper 95% Limit  |              |              |              | 
|                      |  Cntrst Total    |        8,062 |       -2,049 |       -6,263 | 
---------------------------------------------------------------------------------------- 
|                      |                  |              |              |              | 
| INJURY               | SAMSIZE          |       56,388 |       51,806 |       53,300 | 
|                      | DIFF             |      -67,668 |     -529,475 |     -461,807 | 
|                      | DIFF STE         |       32,521 |      170,647 |      171,557 | 
|                      | Lower 95% Limit  |              |              |              | 
|                      |  Cntrst Total    |     -132,317 |     -868,709 |     -802,850 | 
|                      | Upper 95% Limit  |              |              |              | 
|                      |  Cntrst Total    |       -3,018 |     -190,241 |     -120,764 | 
---------------------------------------------------------------------------------------- 
|                      |                  |              |              |              | 
| PDO                  | SAMSIZE          |       51,871 |       46,879 |       49,374 | 
|                      | DIFF             |     -161,701 |     -678,387 |     -516,687 | 
|                      | DIFF STE         |       90,587 |      461,172 |      460,677 | 
|                      | Lower 95% Limit  |              |              |              | 
|                      |  Cntrst Total    |     -341,782 |   -1,595,166 |   -1,432,482 | 
|                      | Upper 95% Limit  |              |              |              | 
|                      |  Cntrst Total    |       18,380 |      238,391 |      399,109 | 
---------------------------------------------------------------------------------------- 
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The standard errors for the differences (DIFF STE) between GES 2014 and GES 2015 are much 

smaller than those between GES and CRSS annual estimates (GES 2014 versus CRSS 2016 or 

GES 2015 versus CRSS 2016) because GES annual estimates are positively correlated while the 

GES estimate is independent from the CRSS estimate. It should be noted that the difference 

between CRSS estimates and GES estimates may be confounded by the potential GES bias. 

5.3. Example 3: Composite Estimates 

 

A composite estimate refers to a function of estimates made from different samples. FARS is an 

annual census survey of all fatal crashes. FARS data collection is independent from GES or CRSS 

data collection. FARS’s target population – fatal crashes - is a sub-population of GES or CRSS 

target population. FARS finite population parameter estimates do not have design variance because 

all fatal crashes were observed. Therefore, FARS data can provide very good estimates for the 

fatal domain (sub-population). Because of this, it is sensible to make a composite estimate using 

estimates from both FARS and CRSS as in the following example: 

 Make an estimate 𝜃𝐹𝐴𝑅𝑆 for total fatal crash count from FARS. 

 Make an estimate 𝜃𝐶𝑅𝑆𝑆 for total injury crash count from CRSS non-fatal domain. 

 Create a composite estimate for total fatal and injury count: 𝜃𝐶 = 𝜃𝐹𝐴𝑅𝑆 + 𝜃𝐶𝑅𝑆𝑆. 

Specifically, to estimate the total number of fatal and injury crashes in 2016, first calculate the 

total number of fatal crashes from 2016 FARS: 𝜃𝐹𝐴𝑅𝑆 =34,439. Then from Example 2 above, 

estimate the number of injury crashes from 2016 CRSS: 𝜃𝐶𝑅𝑆𝑆=2,177,201. Finally, the total 

number of fatal and injury crashes in 2016 is estimated by composite estimate:  

 

𝜃𝐶 = 34,439 + 2,177,201 =  2,211,640 

 

The design variance of 𝜃𝐶 is:  

𝑉𝑎𝑟𝑑(𝜃𝐶) = 𝑉𝑎𝑟𝑑(𝜃𝐹𝐴𝑅𝑆) + 𝑉𝑎𝑟𝑑(𝜃𝐶𝑅𝑆𝑆) 

= 𝑉𝑎𝑟𝑑(𝜃𝐶𝑅𝑆𝑆) = 142,291
2 

 

Covariance of 𝜃𝐹𝐴𝑅𝑆 and 𝜃𝐶𝑅𝑆𝑆 is zero because 𝜃𝐹𝐴𝑅𝑆 and 𝜃𝐶𝑅𝑆𝑆 are independent. 

𝑉𝑎𝑟𝑑(𝜃𝐹𝐴𝑅𝑆) = 0 because FARS is a census, and 𝑉𝑎𝑟𝑑(𝜃𝐶𝑅𝑆𝑆) = 142,291
2 from Table 4.  
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It should be noted that the domain estimate 𝜃𝐶𝑅𝑆𝑆 (total injury crash count) should be calculated 

from the full CRSS sample as in Example 2. Sub-setting the full sample for domain estimation 

may produce a biased variance estimate (see Graubard et al., 1996).  

 

Another approach is combining FARS data with the same year CRSS data and then making 

estimates from the combined data. However, because the same year FARS and CRSS data have 

overlapping coverages for the fatal crashes, dual frame estimation methods should be used to 

analyze the combined data. See Lohr and Rao (2000) and Mecatti (2007) for more information 

about dual frame estimation.  

5.4 Example 4: Domain Estimates 

 

Domain estimate refers to the statistics for a subpopulation. It is important to use the full sample 

for domain estimation. It may produce biased variance estimate by sub-setting the full sample for 

domain estimation.  

 

In SAS PROC SURVEY procedures, domains are specified by the variables listed in the TABLES 

and/or the DOMAIN statement. The SAS BY statement sub-sets the full sample for one domain at 

a time, therefore it should not be used to produce domain estimates. In SAS-callable SUDAAN 

procedures, domains are specified by the variables listed in the TABLES and/or the SUBPOPN 

statement.  

 

The following SAS program estimates the percentage of alcohol-involved non-fatal crashes. To 

this end, we classify all crashes into two domains: fatal and non-fatal crashes. The domains were 

defined by variable FATAL in the DOMAIN statement.  

 

PROC FORMAT; 

 VALUE FATAL 1="FATAL" 0="NON-FATAL"; 

 RUN; 

 

DATA CRSS2016; 

 SET COMBINED; 

 IF YEAR=2016; 

 FATAL=(CRASH_SEV=1);   /*FATAL=1 IF FATAL, 0 OTHERWISE*/ 

 ALCOHOL=(ALCHL_IM=1); /*ALCOHOL=1 IF ALCOHOL INVOLVED*/ 

 RUN; 
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PROC SURVEYMEANS DATA=CRSS2016 VARMETHOD=JK MEAN SUM CLM; 

 STRATA PSUSTRAT; 

 CLUSTER PSU_VAR; 

 WEIGHT WEIGHT; 

 VAR  ALCOHOL; 

 DOMAIN FATAL; 

 FORMAT FATAL FATAL.; 

 RUN; 

 

Table 6: SAS PROC SURVEYMEANS domain estimates 

                                    Domain Analysis: FATAL 
 
                                                               Std Error 
 FATAL      Variable  Label                            Mean      of Mean      95% CL for Mean 
------------------------------------------------------------------------------------------------ 
 NON-FATAL  ALCOHOL   Alcohol Involved In Crash    0.043592     0.002480   0.03852813 0.04865657 
 FATAL      ALCOHOL   Alcohol Involved In Crash    0.209324     0.017185   0.17422747 0.24442118 
------------------------------------------------------------------------------------------------ 

 

The following SAS-callable SUDAAN program also estimates the percentage of alcohol involved 

crashes by two domains: fatal and non-fatal crashes. The domains were defined by variable FATAL 

in the TABLE statement.  

PROC DESCRIPT DATA=CRSS2016 DESIGN=JACKKNIFE NOTSORTED; 

 NEST  PSUSTRAT PSU_VAR; 

 WEIGHT WEIGHT; 

 CLASS FATAL; 

 TABLES FATAL; 

 VAR  ALCOHOL; 

 SETENV ROWWIDTH=15 COLWIDTH=15 LABWIDTH=15; 

PRINT  NSUM="SAMSIZE" WSUM="POPSIZE" MEAN="MEAN"  

SEMEAN="MEAN SE" LOWMEAN UPMEAN 

/ NSUMFMT=F8.0 WSUMFMT=F10.0 MEANFMT=F6.4 

SEMEANFMT=F6.4 LOWMEANFMT=F6.4 UPMEANFMT=F6.4; 

 RUN; 

 

Table 7: SUDAAN domain estimates 
 
----------------------------------------------------------------------------- 
|                 |                  | FATAL                                | 
| Variable        |                  |--------------------------------------| 
|                 |                  | Total      | 0          | 1          | 
----------------------------------------------------------------------------- 
|                 |                  |            |            |            | 
| Alcohol         | SAMSIZE          |     47,515 |     46,550 |        965 | 
| Involved In     | POPSIZE          |  7,276,505 |  7,242,090 |     34,415 | 
| Crash           | MEAN             |     0.0444 |     0.0436 |     0.2093 | 
|                 | MEAN SE          |     0.0025 |     0.0025 |     0.0172 | 
|                 | Lower 95% Limit  |            |            |            | 
|                 |  Mean            |     0.0392 |     0.0385 |     0.1742 | 
|                 | Upper 95% Limit  |            |            |            | 
|                 |  Mean            |     0.0495 |     0.0487 |     0.2444 | 
----------------------------------------------------------------------------- 
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6. Frequently Asked Questions 

 

1. What is CRSS? 

A. The Crash Report Sampling System is NHTSA’s new national probability-based 

crash sampling system designed to replace the General Estimates System.  

2. What data does CRSS collect and what does it represent? 

A. Like GES, CRSS samples police crash reports and codes the information into a 

data file. The CRSS data, when used with the accompanying weights, are 

nationally representative of all police-reported motor vehicle traffic crashes where 

the first harmful event occurred on a public trafficway. 

3. When did NHTSA transition from GES to CRSS? 

A. 2015 was the last year of data collection through GES. CRSS was designed and 

implemented over a multi-year effort and started collecting data in January 2016. 

4. Why did NHTSA transition from GES to CRSS? 

A. The Congress directed and provided funds to NHTSA to modernize its data 

collection system. Since the GES had used the same data collection sites since 1988, 

the existing GES police jurisdiction samples and weights became outdated as the 

PJ population changed. In addition, GES produced biased fatal crash estimates. 

Given the shifts in population and vehicle fleet, and the changing analytic needs of 

the safety community, NHTSA modernized its crash data collection system. 

5. How is CRSS different from GES in terms of its sample design?  

A. The following are some major differences in sample designs of CRSS and GES: 

 Independent sample: the CRSS sample design is independent from the GES or 

any other NHTSA’s surveys, including NHTSA’s new Crash Investigation 

Sampling System that replaces the NASS Crashworthiness Data System 

(CDS). In comparison, the GES and the CDS samples were nested, i.e., the 

CDS used a subset of the GES data collection sites. The independent design 

allows NHTSA to optimize each system - CRSS and CISS. 

 Different formation of PSUs: In both CRSS and GES, a PSU is either a county 

or a group of counties. In CRSS, the nation was partitioned into 707 PSUs, 

while in GES 1195 PSUs were formed. CRSS’s average PSU size is bigger 
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than GES. This resulted in more equal weights in CRSS. In addition, a new 

composite PSU measure of size variable using the various estimated crash 

counts by the new PAR strata was used in CRSS.  

 Finer PSU stratification: The 60 GES PSUs were selected from 12 PSU strata 

formed by census region and urbanicity type. The 60 CRSS PSUs were 

selected from 25 PSU strata formed by census region, urbanicity type, vehicle 

miles traveled, total number of crashes, total truck miles traveled, and road 

miles.  

 Scalable PSU sample: the CRSS PSU sample size can be increased without 

changes to the existing PSU sample while the corresponding selection 

probabilities are still trackable. This enables NHTSA to accommodate 

potential budget fluctuations with minimum operational costs and efforts.  

 Scalable PJ sample: the Pareto sampling method was used to select the CRSS 

PJ sample. The second stage sampling frame, the police jurisdictions in the 

selected PSUs, changes over time. Consequently, the PJ sample needs to be 

reselected occasionally to maintain adequate sample size or to cover the 

updated PJ frame. Pareto sampling reduces the changes to the existing PJ 

sample when a new PJ sample is reselected.  

 Alignment with data needs: At CRSS PAR sample selection stage, PAR strata 

were revised based on data needs to oversample the following analysis 

domains: 

o Crashes involving killed or injured pedestrian; 

o Crashes involving killed or injured motorcycle occupant;  

o Crashes involving killed or injured occupant of late model year passenger 

vehicle; and 

o Crashes involving killed or severely injured occupant of non-late model 

year passenger vehicle.  

 Optimized sample allocation: CRSS PSU, PJ and PAR sample allocation was 

optimized by minimizing the variance of a simplified variance estimator 

subject to fixed cost.  
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 Flexible system to allow mid-year changes: CRSS allows for mid-year 

changes to sampling parameters such as PAR sampling intervals, PJ sample 

changes etc. to cope with unanticipated changes. GES sample parameters 

could not be changed in the middle of the year. 

6. How is CRSS similar to GES in sample design?   

A. The following are some major common features between the sample designs of 

CRSS and GES: 

 The CRSS target population is the same as the GES, i.e., all police-reported 

crashes of motor vehicles occurring on a public trafficway.  

 Both CRSS and GES collect information mainly from police crash reports. 

 Both CRSS and GES have a three-stage sample design: PSU, PJ, and PAR 

sample selection.  

 In both surveys, PSUs and PJs have selection probabilities proportional to 

their measure of sizes.  

 Both surveys’ PAR samples were selected using systematic sampling.  

 Both surveys tried to achieve equal-weights within PAR stratum. 

7. How do the CRSS analysis files (data sets) differ from the GES? 

A. The CRSS analysis file is almost the same as the GES analysis file. They have the 

same variables with the same names except CRSS no longer codes the land use 

variable. A new PSU stratification variable PSU_VAR was created in CRSS for 

variance estimation purposes (see Example 1).  

8. Is the difference in total crashes (or other metric of choice) between the 2015 

GES and the 2016 CRSS estimates due to the design change or an actual 

increase?  

A. The difference between the 2015 GES total crash estimate and 2016 CRSS total 

crash estimate may result from the following: 

 The difference between the true 2015 total crash count and the true 2016 total 

crash count;  

 The sampling errors of 2015 GES total crash estimate and 2016 CRSS total 

crash estimate;  

 The potential bias of 2015 GES total crash estimate. 
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For example, in the past we have observed GES fatal crash underestimation. 

When a CRSS estimate is compared to a biased GES estimate, the observed 

difference is confounded by the GES bias. However, different variables suffered 

different degrees of bias. The comparisons among GES estimates are less likely 

affected by the bias. See Example 2 for more discussion on this.  

9. Is the difference  between the 2015 GES total crash estimate and the 2016 CRSS 

total crash estimate statistically significant?  

A. No. The difference between the 2016 CRSS total crash estimate and the 2015 GES 

estimate is not significantly different from zero due to the large variance of the 

difference estimate. It should be noted this only means given the data we have, we 

do not have evidence to reject the null hypothesis that the two years have the same 

total number of crashes. This does not necessarily mean the null hypothesis is true. 

See Example 2 for more detailed information about this test and computer codes.  

10. Can we combine FARS and CRSS data for estimates and analysis? 

A. Yes. Below are two options of combining FARS and CRSS data: 

 Combining estimates: Estimates are made separately from FARS data file and 

CRSS sample file. Then a composite estimate is created by combining the 

estimates (Example 3, Chapter 5). 

 Combining data sets: The FARS data file and the CRSS sample file are 

combined first. Weights are adjusted for the overlapping subpopulations. Then 

an estimate is made from the combined data set. This is also called dual frame 

estimation. See Lohr and Rao (2000) and Mecatti (2007) for more information 

about dual frame estimation.  

11. How should data users compute the variance for CRSS estimates?  

A. The CRSS sample is the result of complex survey sampling, and therefore is not a 

simple random sample. Software specialized in complex survey data analysis such 

as SAS PROC SURVEY procedures or SUDAAN procedures should be used to 

make estimates from CRSS sample. Using these specialized softwares along with 

the appropriate design and weight statements, the sampling variance can be 

estimated. Failing to take the sample design and weights into account in estimation 

may incur severe bias to the point and variance estimates. See Chapters 4 and 5 for 
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some basic concept of complex survey data analysis, and SAS and SUDAAN 

sample programs on how to estimate the variances for CRSS estimates.  

12. What software or techniques should be used for variance calculation?  

A. Any software that takes complex survey design into account can be used to make 

estimates from CRSS sample. Some examples of such softwarse: SAS PROC 

SURVEY procedures, SUDAAN, R survey package, and STATA. See Chapter 5 

for specific examples of programming techniques to achieve variance estimation. 

13. Are there issues of bias with GES estimates?  

A. Yes. As we have seen in the past, GES fatal crash estimates and fatality estimates 

were significantly lower than the corresponding FARS counts. Therefore, NHTSA 

has been using FARS data for fatal crash counts. Different variables may suffer 

different degrees of bias. But trends within GES are less likely to be affected by the 

bias.  

14. How are the CRSS estimates validated? 

A. Broadly, NHTSA used known population parameters such as fatal crashes and 

census population estimates to assess the performance of PSU weights. In 

addition, NHTSA  collected PSU level total crash counts to validate the PJ and 

PAR weights. These evaluations established the reliability of the weights and the 

results will be documented in the upcoming CRSS sample design and weighting 

report. 

15. If GES underestimated fatal crashes,  how has this issue been addressed in 

CRSS?  Will it still be necessary to replace CRSS fatal crashes with FARS data, 

or would CRSS be able to stand alone for all analyses of fatal/non-fatal crashes? 

A. Based on the evaluation of the 2016 CRSS estimates, the CRSS does not 

underestimate fatal crash counts. CRSS can be used to make fatal estimates, but 

using FARS data is recommended as FARS is a nationwide census of all fatal 

crashes. NHTSA will continue to use FARS for fatality counts and CRSS for 

injury and PDO related estimates. 
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16. Is there anything different need to do with CRSS data in producing estimates for 

very small sample size?  

A. This is a small area estimation problem. The problem associated with a small 

sample size does not change from GES to CRSS. See Rao and Molina 2015 for 

more details on small area estimation.  

17. How are missing data addressed in CRSS? 

A. As in GES, key CRSS variables with missing information are imputed using the 

sequential regression multivariate imputation procedure. The details of this 

procedure will be illustrated in the CRSS Analytical User’s Manual.  

18. Are there significant differences between the GES imputation and the CRSS 

imputation? 

A. No.  
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