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1. Executive Summary 
 
The National Highway Traffic Safety Administration (NHTSA) collects motor vehicle crash data 
through several systems, including the National Automotive Sampling System (NASS) estab-
lished in the 1970s to support vehicle and highway safety research, policy making, regulation, 
and program development. 
   
NASS is comprised of two nested probability sampling systems, the General Estimates System 
(GES) and the Crashworthiness Data System (CDS). The GES collects general information on 
traffic crashes only from police crash reports. The CDS collects more detailed information on ve-
hicles and passengers. NHTSA developed and implemented the GES in the 1970s. It is based on 
a three-stage, stratified probability sample of primary sampling units (PSUs), police jurisdictions 
(PJs), and police accident reports (PARs). The CDS 24-PSU sample is a subsample of GES 60-
PSU sample. The same PSU and PJ samples have been used for GES data collection since the 
1980s. 
  
Over the past two decades, however, the general population, vehicles, and highway safety 
measures have changed dramatically and so have crash characteristic and distributions. In addi-
tion, the research interest of the transportation community has expanded to topics such as driver 
performance, crash avoidance, and the effects of new technologies on crash amelioration.  
 
NHTSA recognized the need to undertake a redesign of NASS to better support its own and 
stakeholders’ data need. The U.S. Congress authorized NHTSA to undertake a significant effort 
to redesign and modernize its crash data collection system. NHTSA identified three major areas 
for this improvement, redesigning the survey sample, modernizing the information technology 
infrastructure, and revamping its data collection protocols and technology. 
   
The redesign started in January 2012. The majority of the work was the formation of conceptual 
research designs, establishment of sampling frames, selection of data collection locations and 
sources, and documentation of protocol and results for the new NASS. During this process, two 
new national probability-based crash sampling systems were designed, the Crash Report Sam-
pling System (CRSS) and the Crash Investigation Sampling System (CISS), to replace GES and 
CDS, respectively. This report summarizes the sample design and weighting methodology used 
in the CRSS.  
 
Based on its assessment of research objectives and operational considerations, to optimize both 
CRSS and CISS, NHTSA decided to design the CRSS independently from CISS. Therefore, un-
like the current NASS, the formation and selection of the CRSS PSUs were independent of the 
CISS PSU formation and selection.  
 
CRSS has a stratified three-stage sample design similar to GES: PSU, PJ, and PAR. The PSUs 
are deeply stratified and selected with probability proportional to the expected number of crash 
counts based on past experience. In addition, the CRSS PSU sample has been designed to be 
scalable to accommodate future budgetary fluctuation without completely reselecting the PSU 
sample.  
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A new sampling scheme, the Pareto sampling, was used for the PJ sample selection. For PJ sam-
ple selection, Pareto sampling produces a scalable PJ sample with selection probabilities approx-
imately proportional to the PJ’s crash counts. This scalability can be used to handle PJ frame 
changes such as the creation, closure or splitting of PJs.  
 
Based on NHTSA’s internal and external data need study, to ensure enough sampled cases for 
estimation on crashes involving motorcycles, commercial vehicles and pedestrians, 10 important 
analysis domains were identified and used as PAR strata. The overall design weights within each 
of the 10 important analysis domains are designed approximately equal to improve domain anal-
ysis efficiency.  
 
Finally, an optimization technique was applied to find an approximately optimum sample alloca-
tion, i.e., the best combination of PSU, PJ, and PAR sample sizes that minimize the variance un-
der a fixed budget.  
 
CRSS design weights are adjusted for non-response at all sampling stages and coverage errors. 
Estimates using different weight components match with the target benchmarks well.  
 
In summary, the CRSS has been designed as a stratified multi-stage sample survey with scalabil-
ity built into the first two stages of the sampling process. The sample scalability provides options 
to adjust for future uncertainties and changes. Also built into this design are protocols that will 
enable NHTSA to monitor and react to achieve desired sample allocations.   
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2. Introduction 
 

NHTSA collects motor vehicle crash data to support its highway safety research, policy making, 
and regulation program development. Established in the 1970s, NASS has been an integral part 
of NHTSA’s efforts to fulfill this mission.  
 
NASS is comprised of two nested systems, GES and CDS, both operated by NHTSA’s National 
Center for Statistics and Analysis (NCSA) to provide national probability samples of crashes.  
 
GES is a survey of PARs (see Appendix A for an example of a PAR). GES collects general in-
formation of the traffic crashes from PARs only. GES data provides: 
 

• General and large picture of the crash trends; 
• Identification of highway safety problem areas and accesses the size of the problem; 
• A basis for regulatory and consumer information initiatives; and 
• Form the basis for cost and benefit analyses of highway safety initiatives.   

 
See Shelton (1991) for a detailed discussion of GES sampling and weighting procedures. 
  
While the GES captures general information on all types of traffic crashes, CDS focuses on col-
lecting more detailed information from severe crashes involving passenger vehicles to better un-
derstand the crashworthiness of vehicles and consequences to occupants. In addition to PAR in-
formation collected, CDS also collects more detailed data about the crashes, vehicles, and occu-
pants through interviews, medical records, vehicle inspections, and scene inspections. CDS data 
evaluates: 
 

• The overall state of traffic safety and existing and potential traffic safety problems; 
• Crash performance, vehicle safety systems, and designs; 
• The nature of crash injuries as well as the relationship between the type and seriousness 

of a crash and the resulting injuries; and  
• Traffic safety standards and programs including alcohol and safety belt use programs.  

 
See Fleming (2010) and Zhang and Chen (2013) for more details on CDS sampling and 
weighting procedures.  
 
Designed in the 1970s and revised in the 1980s, NASS’s PSU (a county or a group of counties) 
sample, and the secondary sampling unit (SSU, a police jurisdiction or a group of police jurisdic-
tions) sample, have not changed for more than 30 years. During this time, however, the NASS 
sampling frame has had many changes.  
 

• The number and nature of crashes across PSUs 
• The population growth and mobility shift  
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• The PJ frame (opening, closing, merging, crash distribution changes among PJs) 
• Improvements in vehicle and highway safety  

 
Also, the data needs of the highway safety community have increased and significantly changed 
over the last three decades. For example, the primary focus of the original NASS design was to 
enhance crashworthiness knowledge by providing detailed information about vehicle crash pro-
files, restraint system performance, and injury mechanisms. In recent years, however, the high-
way safety community has been increasingly interested in understanding the factors and reasons 
leading to a crash in order to develop new crash avoidance safety countermeasures.  
 
The scope of traffic safety studies has also been expanding. With the substantial reductions in 
passenger vehicle fatalities, more data is needed for crashes involving vehicles and people that 
CDS currently does not collect detailed data on, such as large trucks, motorcycles, and pedestri-
ans.  
 
Recognizing the importance as well as the limitations of the current NASS system, NHTSA is 
undertaking a modernization effort to upgrade its data systems by improving the information 
technology infrastructure, updating the data collection, and reexamining the NASS sample sites 
and sample sizes.  
 
In the MAP-21 legislation, Congress instructed: 
 
“(a) IN GENERAL.—Not later than 1 year after the date of enactment of this Act, the Secretary 
shall submit a report to the Committee on Commerce, Science, and Transportation of the Senate 
and the Committee on Energy and Commerce of the House of Representatives regarding the 
quality of data collected through the National Automotive Sampling System, including the Spe-
cial Crash Investigations Program. 
 
(b) REVIEW.—The Administrator of the National Highway Traffic Safety Administration (re-
ferred to in this section as the ‘‘Administration’’) shall conduct a comprehensive review of the 
data elements collected from each crash to determine if additional data should be collected. The 
review under this subsection shall include input from interested parties, including suppliers, au-
tomakers, safety advocates, the medical community, and research organizations. 
 
(c) CONTENTS.—the report issued under this section shall include— 
(1)  The analysis and conclusions the Administration can reach from the amount of motor vehi-

cle crash data collected in a given year; 
(2)  The additional analysis and conclusions the Administration could reach if more crash inves-

tigations were conducted each year; 
(3)  The number of investigations per year that would allow for optimal data analysis and crash 

information; 
(4)  The results of the comprehensive review conducted pursuant to subsection (b); 
(5)  The incremental costs of collecting and analyzing additional data, as well as data from addi-

tional crashes; 
(6)  The potential for obtaining private funding for all or a portion of the costs under paragraph 

(5); H. R. 4348—367 
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(7)  The potential for recovering any additional costs from high volume users of the data, while 
continuing to make the data available to the general public free of charge; 

(8)  The advantages or disadvantages of expanding collection of non-crash data instead of crash 
data; 

(9)  Recommendations for improvements to the Administration’s data collection program; and 
(10) The resources needed by the Administration to implement such recommendations.” 
 
As a part of the effort to modernize NHTSA’s data collection system, NCSA designed two new 
independent national probability crash sampling systems – the Crash Report Sampling System 
(CRSS) and Crash Investigation Sampling System (CISS) - to replace GES and CDS. This docu-
ment summaries the sample design and weighting procedures of the CRSS.  
 
In the following chapters, we discuss the scope of CRSS, the formation of the sampling frame, 
the selection of sample at each sampling stage, the sample size allocation, weighting and imputa-
tion. A separate document gives a general guidance and some examples on how to use CRSS 
data for analysis (see Zhang, Subramanian, Chen, & Noh, 2019). 
 
  



6 

3. The Scope of CRSS 
 
Data need and research interests have significantly changed since the establishment of NASS. It 
is critical to identify the data need from NHTSA and public data users and to define the scope of 
CRSS correctly. This not only includes identifying data elements that are critical to the identifi-
cation of safety issues, monitoring of trends and evaluation of the effectiveness of countermeas-
ures, but also includes identifying information that is no longer or less useful to the transporta-
tion safety research community. To this end, NHTSA conducted two studies to evaluate data 
need from NHTSA and public data users.  
 

3.1 NHTSA Data Need 
 
In August 2009 NHTSA assembled a project team to conduct a review of the crash data bases 
and an assessment of current and projected data need. Sixty NHTSA employees, with a broad 
range of staff expertise and perspective representing all agency offices, were interviewed. The 
team supplemented the interview data with documented rulemaking and research plans. A report 
on NHTSA’s data needs was submitted to the Congress in 2011 (NHTSA, 2011).  
 
Through this study, NHTSA identified broad goals for the modernized NASS system. These in-
cluded:  
 

• adding new data elements that support the development of safety countermeasures, espe-
cially related to crash avoidance and behavioral safety;  

• adding data on motorcycles, commercial vehicles, pedestrians, bicyclists, school buses, 
and low-speed vehicles;  

• providing more data on injuries and on advanced vehicle technologies; and  
• enhancing crash analysis through reduced missing data and greater data accessibility, and 

modifying the research design to better reflect current populations and increased case-
load. 

 

3.2 Data Needs of the Public 
 
In order to solicit input from the broadest possible group of stakeholders, NHTSA published a 
notice in the Federal Register announcing the survey modernization effort on June 21, 2012 (see 
NHTSA-2012-0084 at www.regulations.gov). This notice reflected NHTSA’s intent to upgrade 
the information technology, research design, data elements, and data collection methods to meet 
the needs of government agencies, industry and academia in the United States and abroad. 
NHTSA also sent the Federal Register Notice to more than 500 interested parties by letters and 
e-mail. These public stakeholders include: 
 

• automotive manufacturers,  
• government agencies,  
• universities and other research organizations, and 
• advocacy groups.  
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More than 20 organizations and individuals submitted over 300 comments to NHTSA. The com-
ments and suggestions received from data users outside of NHTSA reflected similar needs to us-
ers within NHTSA. Comments regarding the importance and relevance of the various data sys-
tems were universally positive. However, data users wanted to see NASS updated and remain 
relevant. The comments covered a wide range of topics: 
 

• data elements 
• data availability 
• sampling plan 
• quality control 
• contracting 
• training 
• data collection  

 
In addition to continuous interest in crashworthiness data, both internal and external comments 
indicated the motor vehicle safety initiatives are now and will continue to be largely focused on 
crash avoidance technologies, behavioral safety, and vehicle systems that can enhance human 
performance and vehicle control.  
 
Another key comment is that the scope of the CISS should be broadened to include crashes in-
volving motorcycles, commercial vehicles, pedestrians, bicycles, and other road users such as 
low speed vehicles and ATVs. It was also suggested that the new CDS should narrow its scope to 
collect data on severe crashes along to increase the number of cases of most interest to data us-
ers, especially under constrained funding scenarios.  
 

3.3 CRSS Analysis Objectives 
 
The purpose of CRSS is to provide annual, nationally representative estimates of the number, 
types and characteristics of police-reported motor vehicle crashes. Police Accident Report (PAR) 
is the sole source of data for CRSS. See Appendix A for an example of a PAR.  
 
Crashes involving motorcycles, commercial vehicles, pedestrians, bicycles, and other road users 
such as low speed vehicles and ATVs are so called rare populations. Capturing these crashes 
needs either a very large sample size or a sample design tailored for a particular type of crashes. 
Motorcycle crashes, for example, are most likely happening in the south and concentrate in a few 
areas. A sampling system for general passenger vehicle crashes with a small sample size such as 
CISS will not be able to capture many motorcycle crashes. The most efficient way to study a rare 
population is to design a special sampling system targets solely on the particular rare population. 
Therefore, NHTSA decided to capture motorcycle, pedestrian, bicycle and large truck crashes 
through CRSS since CRSS has a much larger sample size than CISS. If more information about 
these rare populations is needed, a special study will be designed. This approach will allow both 
CISS and the special study to be efficient for its own purpose.  
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The CRSS estimates may then be used for a variety of purposes, including to:   
 

• estimate crash trends; 
• identify highway safety problem areas;  
• provide a basis for regulatory and consumer information initiatives; and  
• form the basis for cost and benefit analysis of highway safety initiatives.   

 
NHTSA’s internal and public data need studies also identified the following key estimates and 
important analysis domains:  
 

• Assessment of the overall state of traffic safety, and identification of existing and poten-
tial traffic safety problems.  

• The number of police-reported crashes nationwide 
• The number of fatalities in police-reported crashes nationwide (based on a 30 day defini-

tion of fatality which could be used to compare to FARS1) 
• Vehicle type (passenger car, van, SUV, pickup, medium truck, heavy truck, bus, motor-

cycle) 
• Vehicle age – for example, may be 0-3 years old (“new vehicles”), 4-10 years, and 11+ 

years 
• Counts of crashes by crash severity (fatal injury, incapacitating injury, non-incapacitating 

injury, property damage only, etc.) 
• Counts of vehicles by vehicle type and highest injury severity in the vehicle (or collapsed 

maximum injury severity to fatality, injured, no injury) 
• Impact type (pedestrian, bicyclist, or vehicle) 
• Crash type 
• Manner of collision: rollover, front, side, rear end 
• Single- versus multi-vehicle crashes 
• Truck-involved, pedestrian-involved 
• Counts of people by age group (from Traffic Safety Facts reports categories = <5, 5-9, 

10-15, 16-20, 21-24, 25-34, 35-44, 45-54, 55-64, 65-74, and >74) and injury severity 
(possibly collapsed injury severity scores) 

• Counts of people by person type (person type, possibly collapsed to drivers, occupants, 
nonoccupants) and injury severity (possibly collapsed injury severity) 

• Impact direction (clock direction) 
• Vehicle movement (roadway departure, lane/change merge, left turning, etc.) 
• Stability of vehicle (jackknife, loss of control) 
• Intersection type and traffic control type (might be identifiable from GPS/map data) 
• Person type (driver, occupant, pedestrian, cyclist) 
• Number of alcohol-related passenger vehicle, motorcycle, pedestrian, and large-truck 

crashes 
• Number of tow away crashes 

                                                 
1 FARS: Fatality Analysis Reporting System. FARS is a nationwide census of fatal injuries suffered in motor vehicle 
traffic crashes.   
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• Number of serious injuries in passenger vehicle, motorcycle, pedestrian, and large-truck 
crashes 

3.4 CRSS Target Population and Analysis Domains 
 
To achieve the CRSS analysis objectives, NHTSA has determined the target population for the 
CRSS to be all police-reported crashes of motor vehicles (motorcycles, passenger cars, SUVs, 
vans, light trucks, medium or heavy-duty trucks, buses, etc.) on a traffic way. The CRSS target 
population is the same as the GES target population. 
 
The research questions and analysis objectives mentioned in the previous section also suggest 
specific important domains of analysis for CRSS. These important analysis domains will be used 
to stratify the PARs at PAR sample selection stage therefore they are also referred as PAR strata. 
NHTSA identified these important analysis domains and revised GES PAR strata. In response to 
data need, pedestrian, motorcycle and late model vehicle strata were added to CRSS PAR strata. 
The transportation status for the injured passenger and the tow status for the damaged vehicles 
are no longer used in CRSS PAR stratification because this information is too costly to identify. 
Detailed CRSS strata are listed in Table 1 along with the desired target percent of sample alloca-
tion.  
 
In Table 1, the “Target Percent of Sample Allocation” column specifies the desired distribution 
of the sampled cases – for example, 9 percent in analysis domain 2 means 9 percent of the sam-
pled cases should be selected from analysis domain 2. The “Estimated Population” column is the 
estimated population counts for the analysis domains. The “Population Percent” column is the 
estimated population distribution over analysis domains. If the “Population Percent” is lower 
than “Target Percent of Sampling Allocation”, then the corresponding analysis domain is over-
sampled.  
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Table 1: CRSS Analysis Domains, Target Sample Allocation, and Population Sizes 
CRSS 

Analysis 
Domain 

Analysis Domain Description 

Target  
Percent of 

Sample  
Allocation 

Estimated 
Population 
(GES 2011) 

Population 
Percent 

1 An in-scope Not-in-Traffic Surveillance 
(NiTS) crash (take all)*.    

2 
Crashes not in Stratum 1 involving: 

• A killed or injured (includes injury 
severity unknown) non-motorist 

9% 119,579 2.2% 

3 

Crashes not in Stratum 1 or 2 involving: 
• A killed or injured (includes injury 

severity unknown) motorcycle or 
moped rider 

6% 76,513 1.4% 

4 

Crashes not in Stratum 1-3 in which: 
• At least one occupant of a late model 

year** passenger vehicle is killed or 
incapacitated 

4% 22,272 .42% 

5 

Crashes not in Stratum 1-4 in which: 
• At least one occupant of an older** 

passenger vehicle is killed or inca-
pacitated 

7% 84,659 1.6% 

6 

Crashes not in Stratum 1-5 in which: 
• At least one occupant of a late model 

year passenger vehicle is injured (in-
cluding injury severity unknown) 

14% 330,619 6.2% 

7 

Crashes not in Stratum 1-6 involving: 
• At least one medium or heavy truck 

or bus (includes school bus, transit 
bus, and motor coach) with GVWR 
10,000 lbs. or more 

6% 302,781 5.7% 

8 

Crashes not in Stratum 1-7 in which: 
• at least one occupant of an older pas-

senger vehicle is injured (including 
injury severity unknown) 

12% 800,390 15.0% 

9. 

Crashes not in Stratum 1-8 in which: 
• At least one late model year passen-

ger vehicle is involved, 
AND 

• No person is killed or injured in the 
crash 

22% 1,511,371 28.4% 

10 

Crashes not in Stratum 1-9: 
Mostly property-damage-only crashes involv-
ing a non-motorists, motorcycles, mopeds, and 
passenger vehicles that are not late model 
year, and any crashes not classified in strata 1-
9. 

20% 2,078,263 39.0% 

*: NiTS cases are not in the scope of CRSS. They are identified and set aside here for NiTS analysis. NiTS in-scope 
cases are police-reported crashes occurring off the traffic way involving a person who was injured or killed. See 
NHTSA (2014, DOT HS 811 805) for more detailed information on NiTS.  
**: Note: 

 Late model year passenger vehicle: passenger vehicle that are ≤4 years old  
 Older passenger vehicle: passenger vehicle that are 5 years old or older  
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3.5 The Relationship Between the CRSS and the CISS Samples 
 
By the NASS design, the CDS 24-PSU sample is a subsample of GES 60-PSU sample. In other 
words, the CDS is nested within the GES. NHTSA reevaluated the possibility of nesting the 
CISS within the CRSS. The main advantage of this nested design is potential cost savings by 
sharing resources between the two surveys. For example, the PARs obtained from the same PSU 
can be used for both survey’s sample selection.  
 
The cost saving by nesting the CISS in the CRSS is mainly on the technician’s time spent on ob-
taining the PARs for sample selection. CISS collects time-sensitive information, so the PARs 
have to be obtained weekly. The extra cost incurred by separating the CISS from the CRSS is the 
time spent on obtaining the PARs for the CRSS sample selection. CRSS data collection, how-
ever, can be performed in a much longer time interval, and in many PSUs PARs can be obtained 
electronically. Therefore, the cost saving by nesting the two surveys is small.  
 
On the other hand, the main disadvantage of a nested design is the compromises need to be made 
for both survey designs, since a set of PSUs selected must meet the needs of both surveys. The 
major differences between CISS and CRSS include: 
 

• CISS and CRSS have different target population: CISS targets the towed passenger vehi-
cles while CRSS targets the entire universe of police-reported crashes and the vehicle in-
volved in them. 

• CISS and CRSS have different operational requirements: CISS requires follow-on and 
potential on-scene investigation therefore to respond quickly to crashes, the PSUs must 
not exceed certain geographic size while the requirement for CRSS is to primarily select 
a large quantity of all types of PARs without any sensitivity to response times.  

 
Because of the differences between CISS and CRSS, tailored PSU formation, stratification, PSU 
measure of size definition and sample selection independently produce efficient samples for both 
systems. To optimize both CISS and CRSS, NHTSA decided to have the CISS to be independent 
from CRSS.  
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4. An Overview of the CRSS Sample Design 
 
The target population of the CRSS is all police-reported motor vehicle crashes on a traffic way 
resulting in a PAR. A direct selection of a national probability sample of PARs is infeasible be-
cause it requires access to more than 5 million PARs in the Nation. Therefore, the CRSS uses 
three stage sampling method to select a nationally representative sample from the target popula-
tion. The PSU is a county or a group of counties. The SSU is a PJ or a group of PJs. The TSU is 
a PAR.   
 
NHTSA’s data need studies identified important analysis domains. To meet the data need, some 
of the rare analysis domains need to be oversampled in order to have enough cases for analysis. 
Oversampling introduces unequal selection probabilities in the CRSS design. However, although 
oversampling results in unequal selection probabilities across the analysis domains, it is still pos-
sible to achieve approximately equal selection probabilities within each analysis domain identi-
fied in Table 1. Equal selection probabilities within an analysis domain leads to equal weights 
within the analysis domain therefore results in more efficient domain estimates.  
 
Both multi-stage and unequal selection probabilities often inflate the variance. In order to reduce 
the potential of variance inflation, stratification is desirable and considered at every stage of 
CRSS sample selection.  
 
Sample allocation and sample size determination are driven by the budget level, which is cur-
rently unknown for future years. In addition, budget levels may fluctuate in the future. A fixed 
sample size allocation may not be suitable for variable budget scenarios. Reselecting the sample, 
either the PSU sample or PJ sample, may require the renewal of the data collection sites. Renew-
ing PSUs is inefficient because of the high cost of setting up PSUs and the efforts to establish co-
operation from PJs and the recruitment and training of technicians. A highly desirable feature for 
CRSS is to select a scalable sample to avoid reselecting the sample in the future when the budget 
changes. To this end, a multi-phase sampling method was considered for CRSS sample selection. 
This multi-phase sampling method allows for the selection of a deeply stratified and scalable 
sample, if changes in the future are needed.  
 
The major sample design changes in CRSS over GES include: 
 

• PAR strata are redefined to better address data need.  
• PSUs are reformed to allow more equal design weights within PAR strata.  
• PSU sample is deeply stratified. 
• PSU sample is scalable.  
• A composite PSU MOS defined by the new PAR strata is used.  
• PJ sample is scalable.  
• Sample allocation is guided by mathematical optimization.  
• Mathematical method is used to determine PAR sub-listing factor.  

 
In summary, the CRSS uses a stratified, multi-stage/multiphase sampling system with unequal 
selection probabilities and scalable sample sizes. In the following chapters the sampling frame, 
sample selection method, and sample allocation will be discussed.   
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5. PSU Sample Selection 
 
This chapter introduces the PSU sample selection method that includes the PSU frame, PSU 
measure of size, minimum PSU MOS, PSU stratification, and the scalable PSU sample selection 
procedure.  
 

5.1 PSU Frame 
 
Sampling frame refers to a list of the units of the target population through which sample can be 
selected and accessed. A one stage direct selection of a national probability sample of crash re-
ports requires access to all PARs in the Nation, which is cost prohibited if not impossible. In-
stead, the country is partitioned into smaller areas called primary sampling units (PSUs) – a 
county or a group of counties for CRSS – so a probability sample of PSUs can be selected and 
local PARs can be further selected. Several factors were considered in the formation of the CRSS 
PSU frame.  
 
First, for operational efficiency, PSUs were formed to be geographically contiguous so that tech-
nicians do not need to drive long distances to collect the PARs.  
 
Second, Census region and urbanicity have been used in GES and proved to be effective PSU 
stratification variables. Therefore, PSUs were formed to respect Census region and urbanicity.  
 
Third, PSUs were formed to have enough crashes by the PAR strata identified in Table 1. A 
composite measure of size (MOS) of PSU was calculated by the weighted sum of estimated pop-
ulation counts of PAR strata for each PSU. A PSU with larger desirable combination of esti-
mated population counts of all PAR strata has larger MOS. A minimum PSU MOS was deter-
mined to ensure enough PARs in PSUs so that PAR sample for each PAR stratum can be sam-
pled at the desired sampling rate specified by the target sampling rate in Table 1. A county with 
MOS below the minimum MOS is combined with other contiguous counties to meet the mini-
mum MOS requirement. More details on PSU MOS definition and minimum PSU MOS can be 
found below.  
 
Fourth, the outlying counties that do not containing a city in Alaska and Hawaii were excluded 
from the PSU frame because they are remote and have few crashes. See Appendix B for a com-
plete list of areas excluded.  
 
Westat’s software WesPSU was used to form the CRSS PSU frame with consideration of the 
above factors. A total of 707 PSUs were formed from 3,117 counties in the Nation.  
 
In summary, the CRSS PSU frame was formed according to the following criteria: 
 

• PSUs were formed as counties or groups of adjacent counties  
• PSUs respected region, State and urbanicity status 
• PSUs were required to achieve a minimum size (with few exceptions)  
• Outlying areas of Alaska and Hawaii were excluded  
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5.2 PSU Measure of Size  
 
As Table 1 shows, CRSS collects PARs from a spectrum of different PAR strata at different 
sampling rate. A PSU with a large number of various PARs should have a larger chance to be se-
lected so that there will be enough PARs to be selected from. To this end, a measure of size 
(MOS) variable is assigned to every PSU in the frame. A PSU with a larger number of various 
PARs is assigned a bigger MOS. Then a probability proportional to size (PPS) sampling proce-
dure can be applied using this MOS to select a PPS PSU sample. The CRSS PSU MOS was de-
fined as: 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 = �
𝑛𝑛++𝑠𝑠
𝑛𝑛

10

𝑠𝑠=2

𝑁𝑁𝑖𝑖+𝑠𝑠
𝑁𝑁++𝑠𝑠

 

 
Here 
𝑛𝑛       = the desired total sample size of PARs  
𝑛𝑛++𝑠𝑠 = the desired sample size of PARs in the PAR stratum 𝑠𝑠 
𝑁𝑁++𝑠𝑠 = the estimated population counts in the PAR stratum 𝑠𝑠 
𝑁𝑁𝑖𝑖+𝑠𝑠 = the estimated population counts in analysis domain 𝑠𝑠 and PSU 𝑖𝑖. 
 
In the formula,  𝑛𝑛++𝑠𝑠 𝑛𝑛⁄  is the desired PAR strata sample allocation (the “Target Percent of Sam-
ple Allocation” column in Table 1), and 𝑁𝑁𝑖𝑖+𝑠𝑠 𝑁𝑁++𝑠𝑠⁄  is the relative estimated population counts of 
PSU 𝑖𝑖 for domain 𝑠𝑠. In this way, a PSU with larger desirable combination of estimated popula-
tion counts of all PAR strata has larger MOS.  
 
Three potential MOSs were created by using different sources to estimate 𝑁𝑁𝑖𝑖+𝑠𝑠. The final PSU 
MOS was determined by comparing correlations between the potential MOS and outcome varia-
bles such as FARS fatal crash counts, State Data System (SDS) crash counts, and Census popula-
tion.  
 
Table 2 and 3 shows the variables used to estimate 𝑁𝑁𝑖𝑖+𝑠𝑠 for the final PSU MOS. Using these var-
iables and the MOS formula above, the PSU MOS can be expressed as: 
 
MOS=0.09 (ACSPop)/(sum of ACSPop) + 0.06 (MILE_MC)/(sum of MILE_MC)  
  + … + 0.20 (ACSPop*PROPOLD)/(sum of ACSPop*PROPOLD) 
 
The MOSs defined as above are very small numbers. For easier interpretation, all PSU MOSs 
were multiplied by 10,000,000, which makes MOS≥1 for all PSU without changing their relative 
magnitudes.  
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Table 2: Variables Used to Estimate Population Counts by PAR Strata 

PAR 
Stratum Description 

Target 
Sample 

Allocation 

Variables 
Used to Esti-
mate Popula-
tion Counts 

1 NiTS crashes (take all).   

2 Crashes involve a killed or injured (includes in-
jury severity unknown) non-motorist 9% ACSPop 

3 
Crashes involve a killed or injured (includes in-
jury severity unknown) motorcycle or moped 
rider  

6% MILE_MC 

4 
Crashes in which: 
At least one occupant of a late model year pas-
senger vehicle is killed or incapacitated  

4% FATAL5YR x 
PROPNEW 

5 
Crashes in which: 
At least one occupant of an older passenger ve-
hicle is killed or incapacitated  

7% FATAL5YR x 
PROPOLD 

6 

Crashes in which: 
At least one occupant of a late model year pas-
senger vehicle is injured (including injury se-
verity unknown)  

14% ACSPop x 
PROPNEW 

7 

Crashes in which:  
involved at least one medium or heavy truck or 
bus (includes school bus, transit bus, and motor 
coach) with GVWR 10,000 lbs. or more  

6% MILE_TRK 

8 
Crashes in which:  
At least one occupant of a passenger vehicle is 
injured (including injury severity unknown)  

12% ACSPop x 
PROPOLD 

9 

Crashes:  
• Involve at least one late  
model year passenger vehicle, AND  
• In which no person in the crash is killed or in-
jured  

22% ACSPop x 
PROPNEW 

10 Crashes not classified in strata 1-9.  20% ACSPop x 
PROPOLD 
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Table 3: Variable Source and Description  
Variable Description Source 
ACSPop U.S. resident population in 2010  ACS 

MILE_MC Total number of miles driven by motorcycles, 2011 POLK 
FA-

TAL5YR 
Number of fatal crashes, 2007 through 2011 FARS 

PROPNEW Proportion of passenger vehicles that are model year 2008 or 
newer  

POLK 

PROPOLD Proportion of passenger vehicles that are model year 2007 or 
older  

POLK 

MILE_TRK Total number of miles driven by medium or heavy-duty 
trucks, 2011 POLK 

ACS - American Community Survey.  
POLK - R. L. Polk & Company.  
FARS - Fatality Analysis Reporting System. 
 

5.3 Minimum PSU Measure of Size  
 
Minimum PSU MOS is one of the criteria considered for PSU formation. Minimum PSU MOS 
ensures enough PARs in PSU so that the selected PARs have approximately equal selection 
probabilities within each PAR stratum. PARs in PAR stratum 1 (Not-in-Traffic Surveillance) are 
out of CRSS’s scope, therefore PAR stratum 1 is not considered for minimum PSU MOS determi-
nation. PAR stratum 4 cases are rare and have very high oversampling rate. Imposing equal 
weight requirement on stratum 4 may result in PSUs so large that they become inefficient to op-
erate. Therefore, the equal weight requirement is not imposed to stratum 4 for PSU formation 
purpose.  
 
The MOS computed at the county-level was used to determine the minimum PSU MOS. Mini-
mum MOS was determined separately for each of the eight PSU primary strata- combination of 
Census region (Northeast, West, South, Midwest) and urbanicity (urban and rural) as following.  
 
Firstly, in order to achieve equal selection probabilities within a PAR stratum, the overall PAR 
selection probability of the three-stage sample selection should satisfy the following equation:  
 

𝜋𝜋𝑖𝑖𝜋𝜋𝑗𝑗|𝑖𝑖𝜋𝜋𝑘𝑘|𝑖𝑖𝑗𝑗 = 𝑟𝑟𝑠𝑠,   for all PAR 𝑘𝑘 in stratum 𝑠𝑠 = 2, 3, 5, … , 10. 
 
Here 𝜋𝜋𝑖𝑖 is the PSU selection probability, 𝜋𝜋𝑗𝑗|𝑖𝑖 is the conditional PJ selection probability, 𝜋𝜋𝑘𝑘|𝑖𝑖𝑗𝑗 is 
the conditional PAR selection probability, 𝑟𝑟𝑠𝑠 is the sampling rate and calculated by 𝑟𝑟𝑠𝑠 = 𝑛𝑛𝑠𝑠 𝑁𝑁𝑠𝑠⁄ , 
where 𝑛𝑛𝑠𝑠 is the number of PARs to be selected from PAR stratum 𝑠𝑠 and 𝑁𝑁𝑠𝑠 is the estimated pop-
ulation size of PAR stratum 𝑠𝑠. Since selection probability 𝜋𝜋𝑗𝑗|𝑖𝑖 ≤ 1 and 𝜋𝜋𝑘𝑘|𝑖𝑖𝑗𝑗 ≤ 1,  
 

𝜋𝜋𝑖𝑖 ≥ 𝑚𝑚𝑚𝑚𝑚𝑚{𝑟𝑟𝑠𝑠, 𝑠𝑠 = 2, 3,5, … 10} = 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 
 
Secondly, PSUs are to be selected using probability proportional to size (PPS) sampling from 
each PSU stratum. Therefore, PSU selection probability becomes: 
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𝜋𝜋𝑖𝑖 =
𝑛𝑛ℎ𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖
∑ 𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖
𝑁𝑁ℎ
𝑖𝑖=1

, ℎ = 1,2, …𝐻𝐻. 

 
Here 𝑛𝑛ℎ and 𝑁𝑁ℎ are the PSU sample size and population size for PSU stratum ℎ, 𝐻𝐻 is the total 
number of PSU strata.  
 
By combining two formulas above it becomes:  
 

𝑛𝑛ℎ𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖
∑ 𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖
𝑁𝑁ℎ
𝑖𝑖=1

≥ 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚,ℎ = 1, 2, …𝐻𝐻. 

or  

𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖 ≥
1
𝑛𝑛ℎ
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚� 𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖 ,

𝑁𝑁ℎ

𝑖𝑖=1
 ℎ = 1, 2, …𝐻𝐻. 

Therefore, the minimum PSU MOS in the primary PSU stratum ℎ is determined as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑖𝑖𝑚𝑚 =
1
𝑛𝑛ℎ
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚� 𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖

𝑁𝑁ℎ

𝑖𝑖=1
, ℎ = 1, 2, …𝐻𝐻 

 
At this stage, it was anticipated that both census region (Northeast, West, South, Midwest) and 
urbanicity (urban and rural) will be used as the primary PSU stratification variables. The above 
condition was applied to 𝐻𝐻 = 4 ∗ 2 = 8 PSU strata. The further more detailed secondary PSU 
strata (see next section) depend on the PSU formation therefore are not considered for minimum 
PSU MOS. Assuming the total PSU sample size is the same as the GES PSU sample size (𝑛𝑛 =
60), 𝑛𝑛ℎ was allocated according to the relative PSU primary stratum MOS distribution. The PSU 
primary stratum MOS was computed by adding all county-level MOS in the corresponding stra-
tum.  
 
A county with MOS below 𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑖𝑖𝑚𝑚 is combined with adjacent county to meet the minimum 
MOS requirement with a few exceptions. Table 4 shows the minimum PSU MOS determined by 
primary PSU strata along with the PAR stratum with the maximum sampling rate, the maximum 
sampling rates, stratum MOS, and the number of PSUs in a stratum. 
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Table 4: CRSS Primary PSU Strata and Minimum PSU MOS 

Primary 
Strata 

Stratum  
Description 

Total  
Number of 

PSUs in 
Stratum 

PAR  
Stratum  

with  
Maximum 𝒓𝒓𝒔𝒔 

𝒓𝒓𝒎𝒎𝒎𝒎𝒎𝒎 Stratum 
MOS MIN MOS 

1 Northeast, 
Urban 

56 3 0.1547 1,592,889 15,400 

2 Northeast, 
Rural 

44 3 0.0499 287,001 4,776 

3 Midwest, 
Urban 

66 2 0.1156 1,316,292 11,700 

4 Midwest, 
Rural 

110 2 0.0598 760,146 5,678 

5 South,  
Urban 

107 2 0.1916 2,648,551 19,521 

6 South, Rural 207 2 0.0511 1,279,257 5,030 
7 West, Urban 46 5 0.1270 1,690,816 12,632 
8 West, Rural 71 5 0.0370 425,012 3,932 

 

5.4 PSU Frame Stratification 
 
Stratification refers to partitioning sampling frame into non-overlapping sub-populations to allow 
independent sample selection from each sub-population. A careful selection of stratification vari-
ables can produce more balanced sample and reduce the variance of estimates of population pa-
rameters. Stratification also allows better sample size control for sub-population estimation. An 
efficient stratification variable forms homogeneous sub-populations, i.e. minimizing the within 
sub-population variances and maximizing the between sub-populations variances for variables of 
interest.  
 
Census regions were used as a PSU stratification variable resulting in a more geographically bal-
anced and representative PSU sample. Crosswalk between Census regions and States can be 
found at www2.census.gov/geo/docs/maps-data/maps/reg_div.txt. In addition, CRSS PSU MOS 
is distributed fairly unevenly across the regions. Census regions include: 

• Northeast 
• West 
• South 
• Midwest 

 
Urbanicity was also used as a PSU stratification variable resulting in a more demographically 
balanced and representative PSU sample. Urbanicity also produces more efficient stratification 
because crash rates are correlated with population densities. In CRSS, urbanicity has two catego-
ries: 

• Urban PSUs – having a population of 250,000 or greater  
• Rural PSUs – otherwise  

 

http://www2.census.gov/geo/docs/maps-data/maps/reg_div.txt
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Census region and urbanicity formed eight (4×2) primary CRSS PSU strata. Within each primary 
CRSS PSU stratum, Westat’s proprietary software WesStrat was used to further stratify the PSUs 
within each primary PSU stratum using the following stratification variables that were consid-
ered correlated with traffic crashes: 

• VMT_RATE_IMP = imputed HPMS2 vehicle miles traveled / (PSU MOS×1,000,000) 
• TOT_CRASH_RATE = (imputed 2008 injury crashes+ imputed 2008 PDO crashes + 

2007-2011 average fatal crashes) / (PSU MOS×1,000,000) 
• TRK_MI_RATE = Total truck miles /(PSU MOS×1,000,000) 
• ROAD_TYPE_RATE = (highway/primary road miles +secondary road miles) /(PSU 

MOS×1,000,000) 
 
PSUs were stratified into equal and homogeneous nested strata. Within each primary PSU stra-
tum, PSUs with similar characteristics based on the stratification variables are grouped into 
nested strata with approximately equal MOS sizes. The software assists in finding the best nested 
stratification scheme for minimizing the between-PSU variance within stratum, while attempting 
to make the stratum population MOS approximately equal. Stratification variables used for fur-
ther stratification were identified independently within each primary stratum.  
 
The stratification maximized the effect on the following evaluation/outcome measures: 

• The average number of fatal crashes across the years 2009-2011  
• The sum of the 2008 and 2009 State Data System (SDS) incapacitating injury crashes 

(which includes imputed values for non-SDS reporting States)  
• The sum of the 2008 and 2009 SDS non-incapacitating injury crashes (which includes 

imputed values for non-SDS reporting States) 
• The number of insurance claims in 2006 as reported by HLDI3 
• The total number of truck crashes from years 2009 to 2012 

 
It was anticipated that CRSS will not be able to implement more than 100 sites. Under the PPS 
sampling with sample size 100, Los Angeles County was identified as a certainty PSU due to its 
extraordinary large MOS. It was set-aside and treated as a stratum. Since at least 2 PSUs per stra-
tum are needed for variance estimation, 50 secondary strata were allocated to the 8 primary strata 
so that each secondary stratum has approximate equal stratum MOS. Table 5 lists the 51 PSU 
strata (including LA County) along with the upper and lower limits of the stratification variables, 
stratum total MOS, and the number of PSUs.  
 
Table 5 also describes how the secondary PSU strata were formed within each primary PSU stra-
tum. Note that blanks in the table mean that the particular stratum did not rely on that stratifica-
tion variable. For example, primary stratum 1 (Northeast, Urban) was further stratified into 8 
secondary strata (strata 101 – 108). In the Northeast-Urban, the secondary stratum 101consisted 
of the PSUs for which VMT_RATE_IMP was between 0 and 1800.66 and for which 
ROAD_TYPE_RATE was between 0 and 358.504, regardless of the values of 
TOT_CRASH_RATE and TRK_MI_RATE. 
 

                                                 
2 Highway Performance Monitoring System 
3 Highway Loss Data Institute 
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Table 5: CRSS Secondary PSU Strata and PSU Population Counts 
PRIMARY 
STRATA STRATID VMT_RATE_IMP TOT_CRASH 

_RATE TRK_MI_RATE ROAD_TYPE 
_RATE Number 

of PSUs MOS 
Upper Lower Upper Lower Upper Lower Upper Lower 

1 1-01 1801 0     359 0 5 222,923 
1 1-02 4064 1801     359 0 5 183,529 
1 1-03 7159 4064     359 0 8 197,557 
1 1-04 5791 0 0.028 0 153756 0 2175 359 6 176,868 
1 1-05 8040 5791 0.028 0 153756 0 2175 359 7 204,413 
1 1-06   0.028 0 249918 153756 2175 359 7 207,205 
1 1-07   0.028 0 591241 249918 2175 359 7 200,876 
1 1-08   0.039 0.028   2175 359 11 198,297 
2 2-01     236701 0   22 138,907 
2 2-02     1027526 236701   22 147,852 
3 3-01 4135 0   45709 0   3 189,109 
3 3-02 7465 4135   45709 0   8 186,036 
3 3-03 9898 7465   45709 0   10 185,606 
3 3-04     102554 45709   11 198,246 
3 3-05 4444 0   339758 102554   13 183,349 
3 3-06 6003 4444   339758 102554   11 189,402 
3 3-07 11618 6003   339758 102554   10 183,563 
4 4-01     66171 0 4345 0 28 191,482 
4 4-02 6045 0   565025 66171 4345 0 27 190,434 
4 4-03 11623 6045   565025 66171 4345 0 25 187,745 
4 4-04       17641 4345 30 189,376 
5 5-01 3620 0 0.048 0 125590 0   5 188,584 
5 5-02 4530 3620 0.048 0 125590 0   8 194,117 
5 5-03 4951 4530 0.048 0 125590 0   6 159,868 
5 5-04 5016 4951 0.048 0 125590 0   3 206,325 
5 5-05 5277 5016 0.048 0 125590 0   5 223,732 
5 5-06 5746 5277 0.048 0 125590 0   6 149,245 
5 5-07 6399 5746 0.048 0 125590 0   5 204,319 
5 5-08 12826 6399 0.048 0 125590 0   8 205,760 
5 5-09 5641 0 0.048 0 210430 125590   6 191,122 
5 5-10 8348 5641 0.048 0 210430 125590   7 195,787 
5 5-11 13892 8348 0.048 0 210430 125590   10 173,150 
5 5-12   0.048 0 358684 210430   8 198,718 
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PRIMARY 
STRATA STRATID VMT_RATE_IMP TOT_CRASH 

_RATE TRK_MI_RATE ROAD_TYPE 
_RATE Number 

of PSUs MOS 
Upper Lower Upper Lower Upper Lower Upper Lower 

5 5-13   0.048 0 877546 358684   13 192,292 
5 5-14   0.085 0.048     17 181,098 
6 6-01     49854 0   35 211,282 
6 6-02 6353 0   162415 49854   34 209,739 
6 6-03 14415 6353   162415 49854   35 213,326 
6 6-04     250190 162415   33 213,537 
6 6-05 5693 0   1156242 250190   35 208,655 
6 6-06 16271 5693   1156242 250190   35 211,752 
7 7-00         1 286,050 
7 7-01 6477 0 0.027 0 104522 0   7 194,314 
7 7-02 6921 6477 0.027 0 104522 0   4 234,422 
7 7-03 7861 6921 0.027 0 104522 0   5 169,859 
7 7-04 5137 0 0.027 0 249358 104522   3 193,052 
7 7-05 8070 5137 0.027 0 249358 104522   10 218,728 
7 7-06   0.048 0.027 92716 0   9 177,454 
7 7-07   0.048 0.027 186409 92716   7 216,070 
8 8-01       3938 0 30 206,694 
8 8-02       18292 3938 41 205,285 
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5.5 PSU Sample Selection 
 
A major challenge of CRSS sample design to NHTSA is the uncertainty over future funding. A 
fixed PSU sample under the current budget level may not be adequate to handle budgetary 
changes in the future. On the other hand, reselecting the PSU sample in the future would likely 
change the existing CRSS data collection sites. Changing the CRSS data collection sites is both 
costly and time-consuming due to the training of new technicians and establishing corporations 
with local police departments, etc. Therefore, once the CRSS PSU sample is selected and estab-
lished, it is cost efficient to keep using it for in the long term.  
 
Unknown future funding levels and the need for a stable PSU sample required NHTSA to select 
a scalable PSU sample so that the PSU sample size can be decreased or increased with minimum 
impact to the existing PSU sample and the selection probabilities are tractable. To this end, a 
multi-phase sampling method was used to select the CRSS PSU sample by selecting a sequence 
of nested PSU samples. This is different from GES where only a single fixed size PSU sample 
was selected. In this method, a PSU sample larger than actually needed is first selected. Then 
from this selected first phase PSU sample, a smaller subset PSU sample is selected. Then from 
this second phase PSU sample, another smaller third phase PSU sample is selected. This process 
is continued until the PSU sample size reaches unacceptable levels. As Figure 1 shows, this pro-
cess results in a sequence of nested PSU samples. Each of these PSU samples is a probability 
sample and can be used for data collection. If a larger or smaller PSU sample is desirable, the ap-
propriate sample is picked from the nested sequence. This allows us to track the selection proba-
bilities and minimizes changes to the PSU sample. The following is a detailed description of how 
this process was applied to CRSS PSU sampling. For CRSS, 5 PSU samples were selected under 
the 5 scenarios of number of PSU strata and PSU sample sizes. Table 6 summarizes the CRSS 
PSU sample scenarios.  
 
Table 6: CRSS PSU Sample Scenarios: Number of Strata and Sample Size 

Scenario Number of  
PSU Strata 

Number of  
Non-certainty PSU 

Number of  
Certainty PSU 

Total Number  
of PSU 

1 50 97 4 101 
2 37 74 1 75 
3 25 50 1 51 
4 12 24 0 24 
5 8 16 0 16 

 
The following is a detail description of the CRSS PSU sampling method in each scenario and be-
tween-scenarios.  
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Figure 1: Nested PSU Samples 

Scenario 1: 101 PSUs

Scenario 2: 75 PSUs 

Scenario 3: 51 PSUs

Scenario 4: 24 PSUs

Scenario 5: 16 PSUs

 
 

5.5.1 Scenario-1 PSU sample 
 
With initial PSU sample size 100, the PSU frame has been stratified into 50 secondary strata so 2 
PSUs can be selected from each stratum. One PSU in the frame has extraordinary large MOS 
bigger than any single stratum total MOS. This PSU has become a certainty PSU. It has been set 
aside and treated as a separate stratum (7-00). As the result, the scenario-1 PSU sample has 101 
PSUs: 100 PSUs from 50 secondary PSU strata and 1 certainty PSU. The original 50 secondary 
strata and the only overall certainty PSU are listed under the scenario-1 column of Appendix C.  
Systematic probability proportional to size (PPS) sampling has been used to select the 2 PSUs 
from each of the 50 secondary PSU strata. Use ℎ(𝑠𝑠) to denote stratum ℎ under scenario-𝑠𝑠, 𝑀𝑀ℎ(𝑠𝑠) be 
all the PSUs in ℎ(𝑠𝑠) for scenario-𝑠𝑠 sample selection purpose, 𝑀𝑀𝑀𝑀𝑀𝑀ℎ(1)𝑖𝑖

(1)   be the original MOS as-
signed to PSU 𝑖𝑖 in scenario-1 stratum ℎ. The PPS sampling interval has been set to be the sce-
nario-1 stratum total PSU MOS divided by 2: 

𝐼𝐼ℎ(1) =
∑ 𝑀𝑀𝑀𝑀𝑀𝑀ℎ(1)𝑖𝑖

(1)
𝑖𝑖∈𝑆𝑆ℎ(1)

2
, ℎ(1) = 1, 2, … 50. 

A random start has been generated and 2 PSUs systematically selected using the above interval 
from each of the 50 secondary PSU strata. The selection probability of non-certainty PSU 𝑖𝑖 
within PSU stratum ℎ(1) under scenario-1 is: 

𝜋𝜋ℎ(1)𝑖𝑖
(1) =

2𝑀𝑀𝑀𝑀𝑀𝑀ℎ(1)𝑖𝑖
(1)

∑ 𝑀𝑀𝑀𝑀𝑀𝑀ℎ(1)𝑔𝑔
(1)

𝑔𝑔∈𝑆𝑆ℎ(1)

 

In this process, three PSUs had selection probabilities greater than one, so these PSUs were se-
lected with certainty from each stratum.  
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5.5.2 Scenario-2 PSU sample 
 
Scenario-2 PSU sample size is 74. Scenario-2 PSU strata have been reduced to 37 from 50 of the 
scenario-1 PSU sample so that 2 PSUs can be selected from each stratum. The same certainty 
PSU stratum (7-00) in scenario-1 sample has been identified as a certainty PSU again before 
sample selection. Thus, the scenario-2 PSU sample has 75 PSUs: 74 PSUs from 37 PSU strata 
and 1 overall certainty PSU.  
 
To form the 37 strata, 13 of the 50 scenario-1 PSU strata have been collapsed with other strata. 
The collapsing of strata followed the following rules:  
 

• Only the secondary strata in the same primary stratum can be collapsed. 
• Only the neighboring secondary strata in the sequence listed in Appendix C can be col-

lapsed.  
• The resulting strata have similar stratum total MOS within each primary stratum.  

 
The resulting 37 strata are listed under the scenario-2 column of Appendix C.  
After the 37 scenario-2 strata were formed, to select a subsample of the scenario-1 PSU sample, 
the sampled scenario-1 PSUs were used as the PSU population for scenario-2 sample selection.  
 
Two (2) PSUs were selected from each scenario-2 stratum. If a scenario-2 stratum was not the 
result of collapsed scenario-1 strata, it had only 2 PSUs in it and both of them were selected with 
certainty. For such a PSU from stratum ℎ(1) = ℎ(2), the selection probability was: 

𝜋𝜋ℎ(2)𝑖𝑖
(2) = 𝜋𝜋ℎ(1)𝑖𝑖

(1) ∗ 1 =
2𝑀𝑀𝑀𝑀𝑀𝑀ℎ(1)𝑖𝑖

(1)

∑ 𝑀𝑀𝑀𝑀𝑀𝑀ℎ(1)𝑔𝑔
(1)

𝑔𝑔∈𝑆𝑆ℎ(1)

 

If a scenario-2 stratum was collapsed from two scenario-1 strata, then it has 4 PSUs, and each of 
them was assigned a new MOS equal to its scenario-1 stratum total MOS. That is, if PSU 𝑖𝑖 ∈
 ℎ(1), then: 

𝑀𝑀𝑀𝑀𝑀𝑀ℎ(2)𝑖𝑖
(2) = � 𝑀𝑀𝑀𝑀𝑀𝑀ℎ(1)𝑔𝑔

(1)

𝑔𝑔∈𝑆𝑆ℎ(1)
 

Let 𝐽𝐽ℎ(2) be the number of scenario-1 strata that were collapsed into scenario-2 strata ℎ(2) and 

�ℎ𝑗𝑗
(1)�

𝑗𝑗=1

𝐽𝐽ℎ(2)
 be those corresponding scenario-1 strata. Thus ℎ(2) = ⋃ ℎ𝑗𝑗

(1)𝐽𝐽ℎ(2)
𝑗𝑗=1 . Let 𝑛𝑛ℎ(1) be the sce-

nario-1 stratum ℎ(1) PSU sample size. Since scenario-2 sample is selected from scenario-1 sam-
ple, there are a total of 𝑁𝑁ℎ(2) = ∑ 𝑛𝑛ℎ𝑗𝑗(1)

𝐽𝐽ℎ(2)
𝑗𝑗=1  PSUs available in scenario-2 stratum ℎ(2) for selec-

tion. From each collapsed stratum, two PSUs were selected from the pooled 𝑁𝑁ℎ(2) PSUs using 
PPS sampling. The resulting PSU selection probability was: 

𝜋𝜋ℎ(2)𝑖𝑖
(2) = 𝜋𝜋ℎ(1)𝑖𝑖

(1) ∗
2∑ 𝑀𝑀𝑀𝑀𝑀𝑀ℎ(1)𝑔𝑔

(1)
𝑔𝑔∈𝑆𝑆ℎ(1)

∑ 𝑛𝑛ℎ𝑗𝑗
(1)

𝐽𝐽ℎ(2)
𝑗𝑗=1 ∑ 𝑀𝑀𝑀𝑀𝑀𝑀

ℎ𝑗𝑗
(1)𝑔𝑔

(1)
𝑔𝑔∈𝑆𝑆

ℎ𝑗𝑗
(1)

 

Typically, 𝑛𝑛ℎ𝑗𝑗(1) = 2 and 𝜋𝜋ℎ(1)𝑖𝑖
(1) = 2𝑀𝑀𝑀𝑀𝑀𝑀ℎ(1)𝑖𝑖 ∑ 𝑀𝑀𝑀𝑀𝑀𝑀ℎ(1)𝑔𝑔

(1)
𝑔𝑔∈𝑆𝑆ℎ(1)� , therefore,  
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𝜋𝜋ℎ(2)𝑖𝑖
(2) =

2𝑀𝑀𝑀𝑀𝑀𝑀ℎ(1)𝑖𝑖

∑ 𝑀𝑀𝑀𝑀𝑀𝑀ℎ(1)𝑔𝑔
(1)

𝑔𝑔∈𝑆𝑆ℎ(1)

∗
2∑ 𝑀𝑀𝑀𝑀𝑀𝑀ℎ(1)𝑔𝑔

(1)
𝑔𝑔∈𝑆𝑆ℎ(1)

∑ 𝑛𝑛ℎ𝑗𝑗
(1)

𝐽𝐽ℎ(2)
𝑗𝑗=1 ∑ 𝑀𝑀𝑀𝑀𝑀𝑀

ℎ𝑗𝑗
(1)𝑔𝑔

(1)
𝑔𝑔∈𝑆𝑆

ℎ𝑗𝑗
(1)

 

=
2𝑀𝑀𝑀𝑀𝑀𝑀ℎ(1)𝑖𝑖

∑ ∑ 𝑀𝑀𝑀𝑀𝑀𝑀
ℎ𝑗𝑗

(1)𝑔𝑔
(1)

𝑔𝑔∈𝑆𝑆
ℎ𝑗𝑗

(1)

𝐽𝐽ℎ(2)
𝑗𝑗=1

                                     

This is the same selection probability that we would get if we had selected 2 PSUs directly from 
the collapsed scenario-1 strata using PPS. 
 
For example, scenario-2 stratum 1 − 02(2) (see Appendix C Scenario-2 column) is the result of 
collapsing two scenario-1 strata: 1 − 02(1) and 1 − 03(1), each has 2 sampled PSUs. If a PSU 𝑖𝑖 
in the scenario-2 stratum 1 − 02(2) was in the scenario-1 stratum 1 − 03(1), the selection proba-
bility of this PSU is: 

𝜋𝜋1−02(2)𝑖𝑖
(2) =

2𝑀𝑀𝑀𝑀𝑀𝑀1−02(1)𝑖𝑖
(1)

∑ 𝑀𝑀𝑀𝑀𝑀𝑀1−02(1)𝑔𝑔
(1)

𝑔𝑔∈𝑆𝑆1−02(1)

∗
2∑ 𝑀𝑀𝑀𝑀𝑀𝑀1−02(1)𝑔𝑔

(1)
𝑔𝑔∈𝑆𝑆1−02(1)

2∑ 𝑀𝑀𝑀𝑀𝑀𝑀1−02(1)𝑔𝑔
(1)

𝑔𝑔∈𝑆𝑆1−02(1) + 2∑ 𝑀𝑀𝑀𝑀𝑀𝑀1−03(1)𝑔𝑔
(1)

𝑔𝑔∈𝑆𝑆1−03(1)

 

 

                          =
2𝑀𝑀𝑀𝑀𝑀𝑀1−02(1)𝑖𝑖

(1)

∑ 𝑀𝑀𝑀𝑀𝑀𝑀1−02(1)𝑔𝑔
(1)

𝑔𝑔∈𝑆𝑆1−02(1) + ∑ 𝑀𝑀𝑀𝑀𝑀𝑀1−03(1)𝑔𝑔
(1)

𝑔𝑔∈𝑆𝑆1−03(1)

 

 
This is the same selection probability if we had selected 2 PSUs directly from the combined sce-
nario-1 strata 1-02 and 1-03 using PPS.  
 

5.5.3 Scenario -3 – Scenario-5 PSU samples  
 
Scenario-3 to scenario-5 PSU samples have been selected in a similar way as scenario-2 sample 
– each scenario PSU sample was a subsample of previous scenario sample, each scenario’s PSU 
strata were either the same as previous scenario or were collapsed from multiple previous sce-
nario’s strata, and if PSU strata were collapsed, each PSU in the collapsed stratum was assigned 
a new MOS equal to the summation of MOS over all sampled PSUs in the same stratum before 
collapsing. In this way, the scenario PSU samples were nested and the resulting selection proba-
bilities remain PPS in general.  
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5.5.4 PSU Sample between Scenarios  
 
To select any PSU sample of size between two scenarios, first the PSUs between the scenario 
PSU samples were randomly sorted in the following sequence (see Appendix C for the sorted 
sample order): 
 

1. PSUs #1-16: Randomly sort the 16-PSUs in the 16-PSU scenario-5 sample. 
2. PSUs #17-24: Randomly sort the additional 8 PSUs in the 24-PSU scenario-4 sample. 
3. PSUs #25-51: Randomly sort the additional 27 PSUs in the 51-PSU scenario-3 sample.  
4. PSUs #52-75: Randomly sort the additional 24 PSUs in the 75-PSU scenario-2 sample. 
5. PSUs #75-101: Randomly sort the additional 26 PSUs in the 101-PSU scenario-1 sample. 

 
The sorted PSU sequence would be used to determine which stratum to be used for the between-

scenario sample selection and how many PSUs should be selected from each PSU strata for be-

tween-scenarios sample selection. The following is a more detailed description.  

A between-scenario PSU sample is selected after the 5 scenario samples were selected. In gen-

eral, scenario-𝑚𝑚 stratum ℎ(𝑚𝑚) was collapsed from multiple scenario-(𝑚𝑚 − 1) strata: ℎ(𝑚𝑚) =

⋃ ℎ𝑗𝑗
(𝑚𝑚−1)𝐽𝐽ℎ(𝑎𝑎)

𝑗𝑗=1 , here 𝐽𝐽ℎ(𝑎𝑎) is the number of strata collapsed into ℎ(𝑚𝑚). Use (𝑚𝑚 − 1)~𝑚𝑚 to denote a 

scenario between scenario (𝑚𝑚 − 1) and scenario 𝑚𝑚. Depending on the sample size, ℎ((𝑚𝑚−1)~𝑚𝑚) 

would be either a scenario-𝑚𝑚 stratum or scenario-(𝑚𝑚 − 1) strata. To determine ℎ((𝑚𝑚−1)~𝑚𝑚), let 

𝑛𝑛ℎ(𝑎𝑎−1) be the scenario-(𝑚𝑚 − 1) stratum ℎ(𝑚𝑚−1) PSU sample size, 𝑛𝑛ℎ(𝑎𝑎) be the scenario-𝑚𝑚 stratum 

ℎ(𝑚𝑚) PSU sample size, and 𝑏𝑏ℎ((𝑎𝑎−1)~𝑎𝑎) be the between scenario-(𝑚𝑚 − 1) and scenario-𝑚𝑚 sample 

size for ℎ((𝑚𝑚−1)~𝑚𝑚) which equals to the number of PSUs in stratum ℎ(𝑚𝑚) with sample order (deter-

mined by the above sorting) lower than or equal to the given PSU sample size (the total between 

scenario PSU sample size). In general, ∑ 𝑛𝑛ℎ𝑗𝑗(𝑎𝑎−1)
𝐽𝐽ℎ(𝑎𝑎)
𝑗𝑗=1 ≥ 𝑏𝑏ℎ((𝑎𝑎−1)~𝑎𝑎) ≥ 𝑛𝑛ℎ(𝑎𝑎). If ∑ 𝑛𝑛ℎ𝑗𝑗(𝑎𝑎−1)

𝐽𝐽ℎ(𝑎𝑎)
𝑗𝑗=1 =

𝑏𝑏ℎ((𝑎𝑎−1)~𝑎𝑎) , let ℎ((𝑚𝑚−1)~𝑚𝑚)=ℎ(𝑚𝑚−1) – i.e. use scenario-(𝑚𝑚 − 1) strata. If ∑ 𝑛𝑛ℎ𝑗𝑗(𝑎𝑎−1)
𝐽𝐽ℎ(𝑎𝑎)
𝑗𝑗=1 > 𝑏𝑏ℎ((𝑎𝑎−1)~𝑎𝑎) , 

then let ℎ((𝑚𝑚−1)~𝑚𝑚)=ℎ(𝑚𝑚) – i.e. use scenario-𝑚𝑚 stratum. 

 

For example, if a sample of total 60 PSUs (between the 51 scenario-3 PSUs and the 75 scenario-

2 PSUs) are to be selected, scenario-3 stratum 1-03 was collapsed from 3 scenario-2 strata: 1-03, 

1-04, and 1-05. There were ∑ 𝑛𝑛ℎ𝑗𝑗(2)
𝐽𝐽ℎ(3)
𝑗𝑗=1 =6 PSUs collapsed into scenario-3 stratum 1-03 (PSU 

16, 52, 68, 71, 33, 73), 𝑏𝑏ℎ(2~3) =3 (PSU 16, 52 and 33 have sorting order no more than 60), and  
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𝑛𝑛ℎ(3) =2 (PSU 16 and 33 were selected into scenario-3 stratum 1-03 sample). Because 

∑ 𝑛𝑛ℎ𝑗𝑗(𝑎𝑎−1)
𝐽𝐽ℎ(𝑎𝑎)
𝑗𝑗=1 > 𝑏𝑏ℎ((𝑎𝑎−1)~𝑎𝑎) , between scenario sample uses stratum-3 stratum 1-03 and the be-

tween-scenario sample size is 3.  

  

As another example, scenario-3 stratum 6-02 was collapsed from 2 scenario-2 strata: 6-02 and 6-

03. In this case,  ∑ 𝑛𝑛ℎ𝑗𝑗(2)
𝐽𝐽ℎ(3)
𝑗𝑗=1 =4 (PSU 49, 56, 10, and 55 were collapsed into scenario-3 stratum 

6-02 from scenario-2 strata), 𝑏𝑏ℎ(2~3) = 4 (PSU 49, 56, 10 and 55 have sorting order no more than 

60), 𝑛𝑛ℎ(3) =2 (PSU 10 and 49 were selected into scenario-3 stratum 6-02 sample). Because 

∑ 𝑛𝑛ℎ𝑗𝑗(𝑎𝑎−1)
𝐽𝐽ℎ(𝑎𝑎)
𝑗𝑗=1 = 𝑏𝑏ℎ((𝑎𝑎−1)~𝑎𝑎) , scenario-2 stratum 6-02 and 6-03 are used for between scenario sam-

ple and 2 PSUs were selected from each stratum.  

 
The between scenario PSU sample selection, and the between scenario selection probabilities are 
then determined by the sizes of three counts: ∑ 𝑛𝑛ℎ𝑗𝑗(𝑎𝑎−1)

𝐽𝐽ℎ(𝑎𝑎)
𝑗𝑗=1 , 𝑏𝑏ℎ((𝑎𝑎−1)~𝑎𝑎) , and 𝑛𝑛ℎ(𝑎𝑎). There are 

three different situations:  
 
(1). If 𝑏𝑏ℎ((𝑎𝑎−1)~𝑎𝑎) = ∑ 𝑛𝑛ℎ𝑗𝑗(𝑎𝑎−1)

𝐽𝐽ℎ(𝑎𝑎)
𝑗𝑗=1 , then this becomes the exact scenario-(𝑚𝑚 − 1) sample selection. 

The scenario-(𝑚𝑚 − 1) strata �ℎ𝑗𝑗
(𝑚𝑚−1)�

𝑗𝑗=1

𝐽𝐽ℎ(𝑎𝑎)
 and corresponding sample sizes �𝑛𝑛ℎ𝑗𝑗(𝑎𝑎−1)�

𝑗𝑗=1

𝐽𝐽ℎ(𝑎𝑎)
 should 

be used, and the between scenario selection probability would be:  
𝜋𝜋
ℎ�(𝑎𝑎−1)~𝑎𝑎�𝑖𝑖

�(𝑚𝑚−1)~𝑚𝑚� = 𝜋𝜋ℎ(𝑎𝑎−1)𝑖𝑖
(𝑚𝑚−1)  

(2). If ∑ 𝑛𝑛ℎ𝑗𝑗(𝑎𝑎−1)
𝐽𝐽ℎ(𝑎𝑎)
𝑗𝑗=1 > 𝑏𝑏ℎ((𝑎𝑎−1)~𝑎𝑎) > 𝑛𝑛ℎ(𝑎𝑎), the scenario-𝑚𝑚 stratum ℎ(𝑚𝑚) would be used. And the 

between scenario sample size is 𝑏𝑏ℎ((𝑎𝑎−1)~𝑎𝑎). To select these 𝑏𝑏ℎ((𝑎𝑎−1)~𝑎𝑎) PSUs, the 𝑛𝑛ℎ(𝑎𝑎) PSU sce-

nario-𝑚𝑚 sample would be first selected from the ∑ 𝑛𝑛ℎ𝑗𝑗(𝑎𝑎−1)
𝐽𝐽ℎ(𝑎𝑎)
𝑗𝑗=1  PSUs in ℎ(𝑚𝑚). The remaining 

𝑏𝑏ℎ((𝑎𝑎−1)~𝑎𝑎) − 𝑛𝑛ℎ(𝑎𝑎) PSUs are the first 𝑏𝑏ℎ((𝑎𝑎−1)~𝑎𝑎) − 𝑛𝑛ℎ(𝑎𝑎) PSUs on the randomly sorted list for be-
tween-scenario (𝑚𝑚 − 1)~𝑚𝑚 above. This can be viewed as a simple random sample of size 
𝑏𝑏ℎ((𝑎𝑎−1)~𝑎𝑎) − 𝑛𝑛ℎ(𝑎𝑎) selected from the ∑ 𝑛𝑛ℎ𝑗𝑗(𝑎𝑎−1)

𝐽𝐽ℎ(𝑎𝑎)
𝑗𝑗=1 − 𝑛𝑛ℎ(𝑎𝑎) PSUs on the list. In this way, a se-

lected PSU would be either selected into the scenario-𝑚𝑚 sample, or not selected into the scenario-
𝑚𝑚 sample but then selected from the simple random sampling. Therefore, the selection probabili-
ties for these 𝑏𝑏ℎ((𝑎𝑎−1)~𝑎𝑎) PSUs are: 

𝜋𝜋ℎ((𝑎𝑎−1)~𝑎𝑎)𝑖𝑖
((𝑚𝑚−1)~𝑚𝑚) = 𝜋𝜋ℎ(𝑎𝑎)𝑖𝑖

(𝑚𝑚) + �𝜋𝜋ℎ(𝑎𝑎−1)𝑖𝑖
(𝑚𝑚−1) − 𝜋𝜋ℎ(𝑎𝑎)𝑖𝑖

(𝑚𝑚) � ∗
𝑏𝑏ℎ((𝑎𝑎−1)~𝑎𝑎) − 𝑛𝑛ℎ(𝑎𝑎)

∑ 𝑛𝑛ℎ𝑗𝑗
(𝑎𝑎−1)

𝐽𝐽ℎ(𝑎𝑎)
𝑗𝑗=1 − 𝑛𝑛ℎ(𝑎𝑎)
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For example, the total PSU sample size 60 is between scenario-3 (51 PSUs) and scenario-2 (75 

PSUs). Scenario-3 stratum 1 − 03(3) was collapsed from three scenario-2 strata: 1 − 03(2), 

 1 − 04(2), and 1 − 05(2). There were total 6 PSUs before scenario-3 sample was selected: 

∑ 𝑛𝑛ℎ𝑗𝑗(2)
𝐽𝐽1−03(3)
𝑗𝑗=1 = 6. Two PSUs was selected as scenario-3 sample in 1 − 03(3): 𝑛𝑛1−03(3) = 2. 

There are three PSUs with sample order less or equal to 60 (PSU 16, 52, and 33): 𝑏𝑏1−03(2~3) =3 

is between 6 and 2. Therefore stratum 1 − 03(3) should be used. We first select 2 PSUs as the 

scenario-3 sample. We then select the first PSU from the remaining 4 PSUs that were not se-

lected into the scenario-3 sample but were randomly sorted. The selection probabilities for these 

3 PSUs are: 

𝜋𝜋1−03(2~3)𝑖𝑖
(2~3) = 𝜋𝜋1−03(3)𝑖𝑖

(3) + �𝜋𝜋
ℎ𝑖𝑖

(2)𝑖𝑖
(2) − 𝜋𝜋1−03(3)𝑖𝑖

(3) � ∗
1
4

 

(3). If ∑ 𝑛𝑛ℎ𝑗𝑗(𝑎𝑎−1)
𝐽𝐽ℎ(𝑎𝑎)
𝑗𝑗=1 > 𝑏𝑏ℎ((𝑎𝑎−1)~𝑎𝑎) = 𝑛𝑛ℎ(𝑎𝑎), then this becomes the exact scenario-𝑚𝑚 sample selec-

tion. The scenario-𝑚𝑚 stratum ℎ(𝑚𝑚) and sample size 𝑏𝑏ℎ((𝑎𝑎−1)~𝑎𝑎) = 𝑛𝑛ℎ(𝑎𝑎) would be used. The selec-
tion probability is: 

𝜋𝜋
ℎ�(𝑎𝑎−1)~𝑎𝑎�𝑖𝑖

�(𝑚𝑚−1)~𝑚𝑚� = 𝜋𝜋ℎ(𝑎𝑎)𝑖𝑖
(𝑚𝑚)  

 
Appendix C lists the complete sampling order of all 101 PSUs along with the stratification of 
each of 5 scenarios. Any one of the PSU samples in the sequence (either one of 5 scenarios or 
between-scenarios) is a probability sample and can be used for data collection. If a larger or 
smaller PSU sample is desirable, simply find a bigger or smaller sample from the nested se-
quence. This scalable PSU sample allows us to adjust PSU sample size without changing the 
sampled PSUs and also allows us to tract the selection probabilities.  

 

5.5.5 PSU Sample Selection Summary  
 
NHTSA has designed the CRSS PSU sample so that the PSUs can be added (or deleted) as 
budget changes occur, without having to reselect the entire sample again. Meanwhile, the PSUs 
were kept deeply stratified to produce efficient estimates while the resulting selection probabili-
ties are still proportional to PSU MOS so that PSUs with large desired proportion of crashes de-
fined by the PAR strata are more likely to be selected.  
 
Currently up to 101 PSUs can be used for CRSS data collection. However, since the original sce-
nario-1 non-certainty PSUs were selected by systematic PPS sampling method within each origi-
nal scenario-1 PSU stratum, the PSU sample size can be expanded by reducing the systematic 
sampling interval to half in some or all PSUs strata. This allows us to further expand the CRSS 
PSU sample size beyond 101 while keep the original 101 PSUs as part of the PSU sample.   
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6. SSU Sample Selection 
 
PARs are filled out by police officers and reported to the State through a police jurisdiction. For 
the CRSS, PARs can be obtained from PJs either by visiting the PJs or by electronic transmis-
sion. In this way, PJs are viewed as nature clusters of PARs. The CRSS secondary sampling 
units are police jurisdictions (PJs) that produce PARs for the crashes occurred within the sam-
pled PSUs. In order to create PJ frame, NHTSA collected PJ information for the PJs that reported 
crash information to the State in the years of 2010 - 2012 for the 75 PSUs of the scenario-2 PSU 
sample. Among the PJ information, the following 6 types of crash counts were collected to com-
pute SSU MOS: 
 

• Total crashes 
• Fatal crashes 
• Injury crashes 
• Pedestrian crashes 
• Motorcycle crashes 
• Commercial motor vehicle (CMV) crashes  

 
If multiple PJs in a PSU have the same name and address, which are mostly State police offices, 
these PJs were combined into one PJ. If a State police office generates PARs for multiple PSUs, 
the State police office is treated as multiple PJs, each corresponding to the portion of PARs gen-
erated for the corresponding PSU.  
 

6.1 SSU Measure of Size 
 
Similar to the PSU MOS definition, it is sensible to assign larger selection probability to PJs with 
larger number of crashes in desirable crash composition. To this end, two PJ MOS variables 
were created.  
 
First, a coarse PJ MOS was created using the six PJ frame crash counts and the target sample al-
location by PAR strata in Table 1 as follows:      
 
 𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗|𝑖𝑖 = 0.11 × (𝐹𝐹𝑚𝑚𝐹𝐹𝑚𝑚𝐹𝐹 𝑐𝑐𝑟𝑟𝑚𝑚𝑠𝑠ℎ𝑒𝑒𝑠𝑠) + 0.26 × (𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝑟𝑟𝐼𝐼 𝑐𝑐𝑟𝑟𝑚𝑚𝑠𝑠ℎ𝑒𝑒𝑠𝑠) + 0.09 ×
(𝑃𝑃𝑒𝑒𝑃𝑃𝑒𝑒𝑠𝑠𝐹𝐹𝑟𝑟𝑖𝑖𝑚𝑚𝑛𝑛 𝑐𝑐𝑟𝑟𝑚𝑚𝑠𝑠ℎ𝑒𝑒𝑠𝑠) + 0.06 × (𝑀𝑀𝑀𝑀𝐹𝐹𝑀𝑀𝑟𝑟𝑐𝑐𝐼𝐼𝑐𝑐𝐹𝐹𝑒𝑒 𝐶𝐶𝑟𝑟𝑚𝑚𝑠𝑠ℎ𝑒𝑒𝑠𝑠) + 0.06 × 𝐶𝐶𝑀𝑀𝐶𝐶 𝐶𝐶𝑟𝑟𝑚𝑚𝑠𝑠ℎ𝑒𝑒𝑠𝑠) + 0.42 ×
(𝑇𝑇𝑀𝑀𝐹𝐹𝑚𝑚𝐹𝐹 𝑐𝑐𝑟𝑟𝑚𝑚𝑠𝑠ℎ𝑒𝑒𝑠𝑠 − 𝐹𝐹𝑚𝑚𝐹𝐹𝑚𝑚𝐹𝐹 𝑐𝑐𝑟𝑟𝑚𝑚𝑠𝑠ℎ𝑒𝑒𝑠𝑠 − 𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝑟𝑟𝐼𝐼 𝑐𝑐𝑟𝑟𝑚𝑚𝑠𝑠ℎ𝑒𝑒𝑠𝑠 − 𝑃𝑃𝑒𝑒𝑃𝑃𝑒𝑒𝑠𝑠𝐹𝐹𝑟𝑟𝑖𝑖𝑚𝑚𝑛𝑛 𝑐𝑐𝑟𝑟𝑚𝑚𝑠𝑠ℎ𝑒𝑒𝑠𝑠 −
𝑀𝑀𝑀𝑀𝐹𝐹𝑀𝑀𝑟𝑟𝑐𝑐𝐼𝐼𝑐𝑐𝐹𝐹𝑒𝑒 𝑐𝑐𝑟𝑟𝑚𝑚𝑠𝑠ℎ𝑒𝑒𝑠𝑠 − 𝐶𝐶𝑀𝑀𝐶𝐶 𝑐𝑐𝑟𝑟𝑚𝑚𝑠𝑠ℎ𝑒𝑒𝑠𝑠) 
 
Strata 4 and 5 were considered as a fatal crash group, and strata 6 and 8 as injury crash group. 
This rough PJ MOS is used for PJ stratification (see below).  
Second, a finer PJ MOS was created for the PJ sample selection. Crash counts of the 9 PAR 
strata in Table 1 for each PJ in the selected PSUs were estimated based on the 6 types of crash 
counts collected in the PJ frame and other PJ level information. For PJ 𝐼𝐼 in the PJ frame within 
the sampled PSU 𝑖𝑖, the composite SSU MOS is defined as the following: 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗 = �
𝑛𝑛++𝑠𝑠
𝑛𝑛

10

𝑘𝑘=2

𝑁𝑁𝑖𝑖𝑗𝑗𝑠𝑠
𝑁𝑁++𝑠𝑠

 

where 
𝑛𝑛        =  the desired total sample size of crashes 
𝑛𝑛++𝑠𝑠  =  the desired sample size of crashes in the PAR stratum 𝑠𝑠 
𝑁𝑁++𝑠𝑠  =  the estimated population number of crashes in PAR stratum 𝑠𝑠 
𝑁𝑁𝑖𝑖𝑗𝑗𝑠𝑠   =  the estimated population number of crashes in PAR stratum 𝑠𝑠, PJ 𝐼𝐼 and PSU 𝑖𝑖 

This finer PJ MOS was used to assign PJ selection probabilities (see below).  
 

6.2 SSU Stratification 
 
PJ MOS varies dramatically within the selected PSUs. To reduce the sampling variance, the PJ 
frame within each selected PSU was stratified using the coarse PJ MOS.  
 
If a PSU had less than 9 PJs, all PJs were assigned to certainty stratum. Therefore, all PJs in 
these PSUs were selected with selection probability one.  
 
For other PSUs, certainty PJs were first identified using the following condition:  

2𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗
∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗𝑗𝑗

≥ 1 

 
Here 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗 is the coarse PJ MOS of PJ 𝐼𝐼 in PSU 𝑖𝑖. The summation is over all PJs in the PSU. 
After removing the identified certainty PJs, this process was repeated one more time to find cer-
tainty PJs. In the second process, almost certainty PJs were also identified with the following 
condition: 

1 >
2𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗
∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗𝑗𝑗

> 0.7 

 
All certainty PJs and almost certainty PJs identified through the above process were assigned to 
the certainty stratum, i.e., they were selected with selection probability one.  
 
The non-certainty PJs were sorted by their PJ MOS within each selected PSU in descending or-
der. Roughly half of PJs with larger PJ MOS were assigned to the large MOS stratum and the 
other half of PJs were assigned to the small MOS stratum. Therefore, for the PSUs with 9 or 
more PJs, as many as three PJ strata were formed: the certainty stratum, the large MOS stratum, 
and the small MOS stratum.  
 

6.3 SSU Sample Selection 
 
One of the major challenges of the SSU sample selection is the PJ frame changing. Unlike PSUs, 
PJs are relatively unstable as new PJs may emerge or existing PJs may split, merge, or close. The 
PJ MOS is determined by crash counts that are subject to variation every year and hence the PJ 
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stratum may also change. In addition, setting up cooperation with the PJs is time consuming and 
the PJs may refuse to cooperate.  
 
To address these challenges, Pareto sampling (see Rosén, 1997) is used to select the SSU sample. 
Pareto sampling method produces an approximate PPS sample. It handles the frame changes by 
controlling changes to the existing sample. 
  
Pareto sampling method is applied to the PJ sample selection for each of non-certainty PJ strata 
(large MOS or small MOS stratum) within the sampled PSU 𝑖𝑖, as the following:  
 
 Generate a permanent uniform random number 𝑟𝑟𝑖𝑖𝑗𝑗~𝑈𝑈(0,1) for each PJ 𝐼𝐼 in the PJ frame.  
 Identify certainty PJs by the condition:  

𝑚𝑚𝑖𝑖 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗
∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗
𝑀𝑀𝑖𝑖
𝑗𝑗=1

≥ 1 

 
Here 𝑚𝑚𝑖𝑖 is the PJ sample size and 𝑀𝑀𝑖𝑖 is the PJ frame size for a PJ stratum within PSU i. 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗 is 
the finer PJ MOS. The identified certainty PJs are set aside. And this process is repeated to the 
remaining PJs with the reduced PJ sample size until there is no more certainty PJs. Let the total 
number of certainty PJs be 𝑚𝑚𝑐𝑐.  
 
 For the remaining 𝑀𝑀𝑖𝑖 − 𝑚𝑚𝑐𝑐 non-certainty PJs in the frame, calculate PPS inclusion prob-

ability with non-certainty PJ sample size (𝑚𝑚𝑖𝑖 − 𝑚𝑚𝑐𝑐): 

𝑝𝑝𝑖𝑖𝑗𝑗 =
(𝑚𝑚𝑖𝑖 −𝑚𝑚𝑐𝑐)𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗
∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗
𝑀𝑀𝑖𝑖−𝑚𝑚𝑐𝑐
𝑗𝑗=1

 

 Calculate transformed random numbers:  

�
𝑟𝑟𝑖𝑖1(1 − 𝑝𝑝𝑖𝑖1)
𝑝𝑝𝑖𝑖1(1 − 𝑟𝑟𝑖𝑖1)

,
𝑟𝑟𝑖𝑖2(1 − 𝑝𝑝𝑖𝑖2)
𝑝𝑝𝑖𝑖2(1 − 𝑟𝑟𝑖𝑖2)

,⋯ ,
𝑟𝑟𝑖𝑖(𝑀𝑀𝑖𝑖−𝑚𝑚𝑐𝑐)(1 − 𝑝𝑝𝑖𝑖(𝑀𝑀𝑖𝑖−𝑚𝑚𝑐𝑐))
𝑝𝑝𝑖𝑖(𝑀𝑀𝑖𝑖−𝑚𝑚𝑐𝑐)(1 − 𝑟𝑟𝑖𝑖(𝑀𝑀𝑖𝑖−𝑚𝑚𝑐𝑐))

� 

 Sort the transformed random number in ascending order. 
 The 𝑚𝑚𝑐𝑐 certainty PJs and the first 𝑚𝑚𝑖𝑖 − 𝑚𝑚𝑐𝑐 non-certainty PJs on the above list are the PJ 

sample for a PJ stratum within PSU 𝑖𝑖.  
 

In this way, the resulting PJ selection probability is approximately PPS (Rosén, 1997). NHTSA 
conducted a simulation study on the described Pareto sampling strategy to CISS PJ sample selec-
tion. The result of this study shows Pareto selection probability is very close to PPS selection 
probability (Noh & Zhang, 2017).   
 
For the non-certainty PJs, the conditional PJ inclusion probability given PSU selected is: 

𝜋𝜋𝑗𝑗|𝑖𝑖 ≈ 𝑝𝑝𝑖𝑖𝑗𝑗 
In Pareto sampling, once a permanent random number is assigned to a PJ, it will never change. 
Therefore, unless the PJ MOS changes, the transformed random number: 𝑟𝑟𝑖𝑖𝑗𝑗(1−𝑝𝑝𝑖𝑖𝑗𝑗)

𝑝𝑝𝑖𝑖𝑗𝑗(1−𝑟𝑟𝑖𝑖𝑗𝑗)
 does not 

change. If an existing PJ is closed, the corresponding transformed random number is dropped 
from the sorted list. If a new PJ is added to the frame, a new transformed random number is cal-
culated and inserted to the sorted list according to its magnitude. Therefore, when PJ sample has 
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to be re-selected, the change to the existing PJ sample under Pareto sampling is much smaller 
than a regular PPS sampling.  
 
The number of SSUs selected for data collection was determined by the budget level and the op-
timum sample allocation. See Chapter 8 for more information about the optimization. First all 
PJs in the certainty stratum are selected. Then, the SSU sample size determined from the optimi-
zation was allocated to the two non-certainty SSU strata proportionally to the total stratum PJ 
MOS (using the finer PJ MOS) with at least one PJ per stratum.  
 

6.4 EDT PSUs 
 
In the process of implementing the CRSS, NHTSA learnt that in 2018 sample year, 14 sampled 
PSUs provide PARs in electronic formats through NHTSA’s Electronic Data Transfer (EDT) 
system and more PSUs are expected to provide PARs through EDT system in the future. An im-
portant feature of EDT is that PARs can be singled out by their crash location electronically. 
This gives an opportunity for NHTSA to eliminate the second stage, i.e. the PJ, sampling in these 
EDT PSUs because once all PARs in a sampled PSU can be identified electronically by the crash 
location, then the PAR sample can be selected directly without selecting the PJs.  
 
There are three major advantages to eliminate the PJ sample selection. First, there is no need for 
maintaining and monitoring PJ frames changes. Second, it removes the sampling error of PJ sam-
ple selection. Third, if there is a PJ sample selection in the EDT PSUs, then the PJs associated 
with the EDT PARs from the State need to be mapped to the PJs in the PJ frame to determine 
whether the PARs should be listed/sampled or not. Sometimes this mapping can be difficult and 
inaccurate. Incorrect PJ mappings causes PARs grouped into the wrong PJs. Eliminating PJ sam-
pling can eliminate these coverage errors.  
 
The PJ sample selection stage is eliminated in these 14 EDT PSUs starting from 2019. In each of 
these 14 PSUs, all PARs will be assigned to the same pseudo PJ and this pseudo PJ will be se-
lected with certainty (therefore PJ weight equals to one) so that the existing three-stage sampling 
procedure is nominally preserved. The PAR sampling procedure remains the same as described 
in the next chapter. In this way, the elimination of PJ sample selection in EDT PSUs can be im-
plemented with minimum changes to the existing process. Since more PSUs transition to elec-
tronic PAR format, it is expected to eliminate PJ sample selection stages for more PSUs in the 
future.  
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7. TSU Sample Selection 
 

7.1 TSU Frame 
 
The CRSS TSUs are PARs. For each selected SSU (PJ), PARs are periodically obtained by tech-
nician’s visit to the PJ or by electronic transmission. The date when PARs are obtained is called 
contact date. The PARs are listed in the order they become available, and stratified by the PAR 
strata identified in Table 1. In this listing process, PAR sampling frame in each selected PJ are 
prepared for PAR sample selection.  
 
For a large PJ with too many PARs to be listed, PARs are sub-listed. For example, only PARs 
with even PAR numbers are listed if a sub-listing factor is 2, or 1 of every 5 PARs is listed if a 
sub-listing factor is 5. Sub-listing is equivalent to a systematic sampling.  
 

7.2 TSU Sampling Parameters 
 
CRSS PAR sample is selected by a stratified systematic sampling from the listed or sub-listed 
PARs by PAR stratum within a PJ.  
 
The PAR sampling interval is determined in the following manner. The goal is to achieve an ap-
proximately equal inclusion probability for all PARs in the same PAR stratum. Therefore, for all 
PARs in PAR stratum 𝑠𝑠, the overall inclusion probability( 𝜋𝜋𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘)  is set to the sampling rate (𝑟𝑟𝑠𝑠) 
of the PAR stratum 𝑠𝑠 as:   

𝜋𝜋𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘 = 𝑟𝑟𝑠𝑠 =
𝑛𝑛𝑠𝑠
𝑁𝑁𝑠𝑠

,        for all PAR 𝑘𝑘 𝑐𝑐lassified into stratum 𝑠𝑠. 

Here 𝑛𝑛𝑠𝑠 is the desired (or target) PAR sample size and 𝑁𝑁𝑠𝑠 is the estimated total number of PARs 
in the population for the PAR stratum 𝑠𝑠.  
 
On the other hand, the overall inclusion probability 𝜋𝜋𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘 is the result of PSU selection, PJ selec-
tion, sub-listing, and PAR sample selection. Therefore,  

𝜋𝜋𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘 = 𝜋𝜋𝑖𝑖𝜋𝜋𝑗𝑗|𝑖𝑖𝜋𝜋𝑖𝑖|𝑖𝑖𝑗𝑗𝜋𝜋𝑘𝑘|𝑖𝑖𝑗𝑗𝑖𝑖 
Here 𝜋𝜋𝑖𝑖 is the selection probability of PSU 𝑖𝑖, 𝜋𝜋𝑗𝑗|𝑖𝑖 is the selection probability of PJ 𝐼𝐼 given that 
PSU 𝑖𝑖 is selected, 𝜋𝜋𝑖𝑖|𝑖𝑖𝑗𝑗 is the probability that PARs are sub-listed as a cluster, and 𝜋𝜋𝑘𝑘|𝑖𝑖𝑗𝑗𝑖𝑖 is the se-
lection probability of PAR 𝑘𝑘 given that PARs are sub-listed. By combining two equations above, 
the selection probability of PAR 𝑘𝑘 from PAR stratum 𝑠𝑠 becomes, 

𝜋𝜋𝑘𝑘|𝑖𝑖𝑗𝑗𝑖𝑖 =
1

𝜋𝜋𝑖𝑖𝜋𝜋𝑗𝑗|𝑖𝑖𝜋𝜋𝑖𝑖|𝑖𝑖𝑗𝑗
× 𝑟𝑟𝑠𝑠, for PAR 𝑘𝑘 from PAR stratum 𝑠𝑠  

Therefore, the PAR sampling interval, which is the inverse of the PAR selection probability, is 
determined as   

𝑤𝑤𝑘𝑘|𝑖𝑖𝑗𝑗𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚 �1,    
1

𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗|𝑖𝑖𝑤𝑤𝑖𝑖|𝑖𝑖𝑗𝑗𝑟𝑟𝑠𝑠
� 
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Here,  𝑤𝑤𝑖𝑖 = 1 𝜋𝜋𝑖𝑖⁄  is the PSU weight, 𝑤𝑤𝑗𝑗|𝑖𝑖 = 1 𝜋𝜋𝑗𝑗|𝑖𝑖⁄  is the PJ weight, 𝑤𝑤𝑖𝑖|𝑖𝑖𝑗𝑗 = 1 𝜋𝜋𝑖𝑖|𝑖𝑖𝑗𝑗⁄  is the sub-
listing factor, and 𝑟𝑟𝑠𝑠 is the sampling rate of PAR stratum 𝑠𝑠. It is possible that 1 𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗|𝑖𝑖𝑤𝑤𝑖𝑖|𝑖𝑖𝑗𝑗𝑟𝑟𝑠𝑠⁄  is 
less than one. In that case, PAR 𝑘𝑘 is selected with certainty, and the sampling interval 𝑤𝑤𝑘𝑘|𝑖𝑖𝑗𝑗𝑖𝑖 is 
set to one and equal weight can’t be achieved for that certainty case. In CRSS, PAR sampling in-
terval 𝑤𝑤𝑘𝑘|𝑖𝑖𝑗𝑗𝑖𝑖 is a real number. The following section describes how the real number interval 
works in the PAR sample selection.  
 
Although sub-listing reduces the listing cost, the sub-listing factor should be carefully defined so 
that there are enough listed PARs for the PAR sample selection. From the fact that 𝜋𝜋𝑘𝑘|𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 1 we 
have:  

𝑤𝑤𝑘𝑘|𝑖𝑖𝑗𝑗𝑖𝑖 =
1

𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗|𝑖𝑖𝑤𝑤𝑖𝑖|𝑖𝑖𝑗𝑗𝑟𝑟𝑠𝑠
≥ 1 

That is, 

𝑤𝑤𝑖𝑖|𝑖𝑖𝑗𝑗 ≤
1

𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗|𝑖𝑖𝑟𝑟𝑠𝑠
 

Since PARs are listed for all PAR strata in a given PJ, the above inequality must be met for all 
PAR strata. Therefore, a preliminary sub-listing factor is determined as: 

𝑃𝑃𝑟𝑟𝑒𝑒𝐹𝐹𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑟𝑟𝐼𝐼 𝑤𝑤𝑖𝑖|𝑖𝑖𝑗𝑗 = 𝑖𝑖𝑛𝑛𝐹𝐹𝑒𝑒𝑖𝑖𝑒𝑒𝑟𝑟 �𝑚𝑚𝑖𝑖𝑛𝑛 �
1

𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗|𝑖𝑖𝑟𝑟𝑠𝑠
,   𝑠𝑠 = 2,3, … 10�� 

 
In order to use the last digit of PAR number or PAR ID in the implementation of sub-listing, pre-
liminary determined sub-listing factor is adjusted as shown in Table 7. First, percentage of listed 
PARs from the preliminary sub-listing factor is rounded up, and translated into the number of 
listed PARs out of 10 PARs. Then, the final sub-listing factor is determined accordingly.    
 
Table 7: Determination of the Final Sub-Listing Factors 

Preliminary Rounded-up 
Percentage of 
Listed PARs 

Number of 
Listed PARs 

out of 10 
PARs 

Final  
Sub-listing  

Factor 
Sub-listing 

Factor 
Percentage of 
Listed PARs 

1 100% 100% 10 1 
2 50% 50% 5 2 
3 33.3% 40% 4 2.5 
4 25% 30% 3 3.333 
5 20% 

20% 2 5 
6 16.7% 
7 14.3% 
8 12.5% 
9 11.1% 

10+ 10% 10% 1 10 
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7.3 TSU Sample Selection 
 
On a contact date, for each sampled PJ, technician first stratifies new PARs accumulated since 
last contact date into the 9 CRSS PAR strata listed in Table 1 in the order as the PARs become 
available. If sub-listing is required in this PJ, then the technician only stratifies the sub-listed 
PARs. This process is referred as “PAR listing." As the result, in each sampled PJ, PARs are se-
quentially listed under PAR strata. From each list, a systematic PAR sample is selected using the 
pre-determined sampling intervals. The following is a more detailed description of this process. 
 
Let the pre-determined sampling interval be 𝐼𝐼𝑛𝑛𝐹𝐹𝑒𝑒𝑟𝑟𝐼𝐼𝑚𝑚𝐹𝐹𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠𝑘𝑘 which is a real number equal to or 
greater than 1, and uniform random number between (0,1) be 𝐼𝐼𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠𝑘𝑘 for PAR 𝑖𝑖 of PSU 𝑖𝑖, PJ 𝐼𝐼, 
sub-list 𝐹𝐹, and PAR stratum 𝑠𝑠. Then, the PAR sample is selected in a contact date as following: 
  

(A) For the first contact date,  
(1) For the first listed PAR (i.e., 𝑘𝑘 = 1),   

(a) Define the PAR sequence as   
𝑀𝑀𝑆𝑆𝑆𝑆𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠1 = 1 

(b) Calculate the real number sampling unit, and the integer sampling unit as    
𝑅𝑅𝑀𝑀𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠1 = 𝐼𝐼𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠1𝐼𝐼𝑛𝑛𝐹𝐹𝑒𝑒𝑟𝑟𝐼𝐼𝑚𝑚𝐹𝐹𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠1, 
𝐼𝐼𝑀𝑀𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠1 = 𝑐𝑐𝑒𝑒𝑖𝑖𝐹𝐹𝑖𝑖𝑛𝑛𝑖𝑖 �𝑅𝑅𝑀𝑀𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠1�. 

Here the “𝑐𝑐𝑒𝑒𝑖𝑖𝐹𝐹𝑖𝑖𝑛𝑛𝑖𝑖” function rounds up 𝑅𝑅𝑀𝑀𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠1 to the smallest integer that is 
greater than or equal to 𝑅𝑅𝑀𝑀𝑈𝑈𝑖𝑖𝑗𝑗𝑠𝑠1.  

(c) Define Sampling flag as following, and select the PAR if sampling flag is 1 

𝑀𝑀𝑚𝑚𝑚𝑚𝑝𝑝𝐹𝐹𝐹𝐹𝑚𝑚𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠1 = �
1,   if 𝐼𝐼𝑀𝑀𝑈𝑈𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠1 = 𝑀𝑀𝑆𝑆𝑆𝑆𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠1
0,   Otherwise                    

 

(2) For the following listed PAR 𝑘𝑘 (i.e., 𝑘𝑘 > 1), repeat this step until the last listed PAR.  
(a) Define the PAR sequence as   

𝑀𝑀𝑆𝑆𝑆𝑆𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠𝑘𝑘 = 𝑀𝑀𝑆𝑆𝑆𝑆𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠(𝑘𝑘−1) + 1 
(b) Calculate the real number sampling unit and the integer sampling unit as    

𝑅𝑅𝑀𝑀𝑈𝑈𝑖𝑖𝑖𝑖𝑗𝑗𝑠𝑠𝑘𝑘 = 𝑅𝑅𝑀𝑀𝑈𝑈𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠(𝑘𝑘−1) + (𝑀𝑀𝑚𝑚𝑚𝑚𝑝𝑝𝐹𝐹𝐹𝐹𝑚𝑚𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠(𝑘𝑘−1) × 𝐼𝐼𝑛𝑛𝐹𝐹𝑒𝑒𝑟𝑟𝐼𝐼𝑚𝑚𝐹𝐹𝑖𝑖𝑗𝑗𝑠𝑠𝑖𝑖𝑘𝑘), 
𝐼𝐼𝑀𝑀𝑈𝑈𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠𝑘𝑘 = 𝑐𝑐𝑒𝑒𝑖𝑖𝐹𝐹𝑖𝑖𝑛𝑛𝑖𝑖 �𝑅𝑅𝑀𝑀𝑈𝑈𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠𝑘𝑘�. 

(c) Define Sampling flag as following, and select PAR 𝑘𝑘 if sampling flag is 1 

𝑀𝑀𝑚𝑚𝑚𝑚𝑝𝑝𝐹𝐹𝐹𝐹𝑚𝑚𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠𝑘𝑘 = �
1,   𝑖𝑖𝑖𝑖 𝐼𝐼𝑀𝑀𝑈𝑈𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠𝑘𝑘 = 𝑀𝑀𝑆𝑆𝑆𝑆𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠𝑘𝑘
0,   𝑀𝑀𝐹𝐹ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒                    

 

(B) For the following contact dates  
(1) List PARs right after the listed PARs from the previous contact date, and do step 

(A)(2).  
 
CRSS data are collected from PARs. PARs are sampled only if they are available to be listed. 
Therefore, there is no refusals in CRSS and PAR replacement sample is unnecessary for CRSS.  
For more details on CRSS PAR sample selection, see Noh et al. (2016): “CRSS PAR Selection 
Algorithm and the IT Aspects."  
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From each sampled PAR, approximately 120 data items about crash, event, vehicle and people 
were coded. See Crash Report Sampling System analytical user's manual 2016 (NHTSA, 2018) 
for more information about data items coded in CRSS data files.  
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8. Sample Allocation 
 
CRSS data is collected through three stages of sample selection – a PSU sample, a PJ sample and 
a PAR sample. In this chapter, we describe how NHTSA found an approximately optimum sam-
ple allocation, i.e., the best combination of PSU, PJ and PAR sample sizes that minimizes the 
variance under fixed budget.  
 
Optimum sample allocation is an optimization problem. We used a non-linear problem to find 
the optimal PSU sample size 𝑛𝑛, PJ sample size 𝑚𝑚, and PAR sample size 𝑘𝑘 by minimizing the 
overall variance of the proportion estimates of thirteen key estimates under the fixed budget. We 
also considered variance constraints which ensure the new sample design for the CRSS will be at 
least as precise as the current GES for the identified key estimates.  
  
In order to build an optimization model for the CRSS, we simplified the complex sample design. 
The CRSS has a stratified multi-stage probability proportionate to size (PPS) sample design. The 
deep PSU stratification led to 2 sampled PSUs from each PSU stratum as discussed in Chapter 5. 
Taking the PSU or PJ stratification into account adds too many constraints to the first two stages 
and leaves only the PAR sample size to be completely optimized. In addition, taking the unequal 
PPS selection probabilities into account makes the variance estimation model complicated. 
Therefore, NHTSA used three stage simple random sampling without replacement in the optimi-
zation model for simplicity.  
 

8.1 Optimization Model 
 
The optimization model consists of the objective function, cost constraint, and variance con-
strains as following.     

𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑀𝑀𝑒𝑒: �𝐶𝐶�𝐼𝐼���𝑔𝑔�
𝐺𝐺

𝑔𝑔=1

= ��
𝑀𝑀1,𝑔𝑔
2

𝑛𝑛
(1 −

𝑛𝑛
𝑁𝑁

) +
𝑀𝑀2,𝑔𝑔
2

𝑛𝑛𝑚𝑚
(1 −

𝑚𝑚
𝑀𝑀

) +
𝑀𝑀3,𝑔𝑔
2

𝑛𝑛𝑚𝑚𝑘𝑘
(1 −

𝑘𝑘
𝐾𝐾

)�
𝐺𝐺

𝑔𝑔=1

 

𝑀𝑀𝐼𝐼𝑏𝑏𝐼𝐼𝑒𝑒𝑐𝑐𝐹𝐹 𝐹𝐹𝑀𝑀:  𝐶𝐶 = 𝐶𝐶0 + 𝑛𝑛𝐶𝐶1 + 𝑛𝑛𝑚𝑚𝐶𝐶2 + 𝑛𝑛𝑚𝑚𝑘𝑘𝐶𝐶3,                                                                            

                       𝐶𝐶�𝐼𝐼���𝑔𝑔� =
𝑀𝑀1,𝑔𝑔
2

𝑛𝑛
�1 −

𝑛𝑛
𝑁𝑁
� +

𝑀𝑀2,𝑔𝑔
2

𝑛𝑛𝑚𝑚
�1 −

𝑚𝑚
𝑀𝑀
� +

𝑀𝑀3,𝑔𝑔
2

𝑛𝑛𝑚𝑚𝑘𝑘 �
1 −

𝑘𝑘
𝐾𝐾�

 ≤ 𝐶𝐶𝐺𝐺𝐺𝐺𝑆𝑆�𝐼𝐼���𝑔𝑔�,            
                                                                                                                    for  g = 1,⋯ , G. 

• 𝑖𝑖: Subscript of the identified key estimate, 𝑖𝑖 = 1,⋯G. Here G = 13.  
• 𝐼𝐼���𝑔𝑔:  Proportion estimate of the key variable.  
• 𝑛𝑛,𝑚𝑚,𝑘𝑘: Optimal sample sizes of PSUs, PJs per PSU, and cases (PARs) per PJ to be deter-

mined.  
• 𝑁𝑁: Population size of PSUs (𝑁𝑁=707).  
• 𝑀𝑀: Average population size of PJs per PSU (𝑀𝑀=27).  
• 𝐾𝐾: Average population size of PARs per PJ (𝐾𝐾=1,688).  
• 𝐶𝐶�𝐼𝐼���𝑔𝑔�: Variance of the identified key estimate 𝐼𝐼���𝑔𝑔.  
• 𝑀𝑀1,𝑔𝑔

2 ,  𝑀𝑀2,𝑔𝑔
2 ,  𝑀𝑀3,𝑔𝑔

2 : Variance component at PSU-, PJ-, and PAR-level.  
• 𝐶𝐶,𝐶𝐶0,𝐶𝐶1,𝐶𝐶2,𝐶𝐶3: Total, fixed, PSU-, PJ-, and PAR-level cost coefficients.  
• 𝐶𝐶𝐺𝐺𝐺𝐺𝑆𝑆�𝐼𝐼���𝑔𝑔�: Variance of the identified key estimate 𝐼𝐼���𝑔𝑔 in the current system (NASS GES).  
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Note that the summation of variances over all key estimates in the objective function indicates 
we treated all key estimates equally.  
 
NHTSA conducted a cost analysis through the GES collection activity. Based on the results of 
this analysis and other accounting information, the CRSS cost coefficients were estimated. The 
detail of the cost estimation is in Noh (2014).  
 
Thirteen key variables were identified to be considered in the objective function. These key vari-
ables were also used in the variance constraints to ensure the CRSS will produce equal or smaller 
variance for these variables than GES. The key variables are: fatal crash, incapacitating injury 
crash, non-incapacitating injury crash, collision with moving vehicle in transport, passenger car, 
light truck & van, bus, medium/heavy truck, motorcycle, rollover vehicle, impact-front, impact-
side, impact-rear.  
 
The variance components (𝑀𝑀1,𝑔𝑔

2 ,  𝑀𝑀2,𝑔𝑔
2 ,  𝑀𝑀3,𝑔𝑔

2 ) at PSU-, PJ-, and case-level were estimated for pro-
portion estimates of the thirteen key variables from 3 year GES data (2009~2011). A range of to-
tal costs were considered. Five hundred starting points (msnumstarts=500) were used in SAS 
PROC OPTMODEL to find the global optimum solution. More detailed information on 
NHTSA’s optimization can be found in Noh and Zhang (2016).  
 

8.2 Optimization Results 
 
Table 8 lists the optimization results by rescaled budget levels. In this Table, budget levels were 
rescaled from $1 to $2.5. When budget level increases, SSU sample size 𝑚𝑚 and TSU sample size 
𝑘𝑘 tend to be stable. It is mainly the PSU sample size 𝑛𝑛 steadily increasing. This is consistent with 
the objective function which indicates factor 1 n⁄  affects all three terms of the total variance 
therefore increasing PSU sample size is generally the most effective way of reducing the total 
variance.  
 
The PAR sample size 𝑘𝑘 was obtained for the general population as one domain. In CRSS, how-
ever, separate estimates are made for the 9 PAR strata/domains. Therefore, 𝑘𝑘 PARs needed for 
each of the 9 PAR strata. The last two columns of Table 8 lists the corresponding PAR counts 
and estimated total costs.  
 
The objective value is the average variance of the key estimates. The variances of the key esti-
mates under current GES were used as constraints. Therefore, under these sample allocations, we 
expect these key estimates have equal or smaller variance under CRSS than the corresponding 
GES estimates. As PSU sample size increases, the average variance decreases, therefore some or 
all these key estimates will have even smaller variances.  
 
Figure 2 displays the optimization results. As the rescaled budget increases, the PJ sample size 𝑚𝑚 
and the PAR sample size 𝑘𝑘 tend to be stable while the PSU sample size 𝑛𝑛 increases and the aver-
age variance decreases.  
 
Table 8: CRSS Optimization Results (With Variance Constrains of Individual Key Estimate) 
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Objective 
Value 

Budget 
(C) n m k 

Sample 
Size 

(nmk) 

Sample 
Size 

(nm9k) 

Rescaled 
Cost 

(nm9k) 
0.0081687 $1.00 8.8 2.4 47.4 995 8,957 $1.19 
0.0040891 $1.17 16.6 2.7 45.6 2,028 18,253 $1.56 
0.0027454 $1.33 23.5 3 43.6 3,079 27,714 $1.93 
0.0020847 $1.50 29.6 3.4 41.4 4,109 36,984 $2.29 
0.0016636 $1.67 36.6 3.4 40.9 5,118 46,058 $2.66 
0.0015095 $1.75 40.1 3.4 40.8 5,636 50,724 $2.84 
0.0013852 $1.83 44 3.5 38.6 5,881 52,928 $2.97 
0.0012682 $1.92 47.2 3.4 41.6 6,777 60,992 $3.23 
0.0011683 $2.00 51.7 3.4 41.6 7,225 65,024 $3.40 
0.0010927 $2.08 54.6 3.4 41.2 7,752 69,772 $3.58 
0.0010145 $2.17 59.2 3.3 41.9 8,288 74,590 $3.77 
0.0009586 $2.25 61.5 3.5 41.6 8,878 79,906 $3.97 
0.0008972 $2.33 66.2 3.4 42 9,375 84,374 $4.15 
0.0008072 $2.50 72.7 3.5 40.8 10,268 92,414 $4.49 

Note: All costs are rescaled so the lowest cost starts from $1. 
 
 
Figure 2: Average Variance, PSU, PJ and PAR Sample Size as Functions of Budget 
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9. Weighting 
 
The CRSS sample is the result of a probability sampling with sampling features such as stratifi-
cation, clustering, and unequal selection probabilities. Because of this, CRSS sample is not a 
simple random sample. CRSS sample should be properly weighted to produce unbiased esti-
mates. Unweighted estimates may be severely biased. This chapter describes how CRSS weights 
were calculated.  
 
The CRSS weights are created in the following steps: 

• Design weights at all three stages  
• Non-response adjustments at all three stages 
• Duplicate adjustment 
• Post-stratification (i.e., within PSU calibration)  
• Calibration of case weight 

 

9.1 Design Weights 
 
Design weight is the inverse of the selection probability defined by the sample design. It is the 
product of PSU design weight, PJ design weight, sub-listing factor, and PAR design weight: 

𝑤𝑤𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘 = 𝑤𝑤𝑖𝑖 ∗ 𝑤𝑤𝑗𝑗|𝑖𝑖 ∗ 𝑤𝑤𝑖𝑖𝑘𝑘|𝑖𝑖𝑗𝑗 
Here  

• 𝑤𝑤𝑖𝑖 = 𝜋𝜋𝑖𝑖−1 is the inverse of PSU 𝑖𝑖 selection probability,  
• 𝑤𝑤𝑗𝑗|𝑖𝑖 = 𝜋𝜋𝑗𝑗|𝑖𝑖

−1 is the inverse of PJ 𝐼𝐼 selection probability,  
• 𝑤𝑤𝑖𝑖𝑘𝑘|𝑖𝑖𝑗𝑗 = 𝑤𝑤𝑖𝑖|𝑖𝑖𝑗𝑗 ∗ 𝑤𝑤𝑘𝑘|𝑖𝑖𝑗𝑗𝑖𝑖 is the inverse of PAR selection probability which is decomposed as 

sub-listing and PAR selection. 𝑤𝑤𝑖𝑖|𝑖𝑖𝑗𝑗 is the sub-listing factor, and 𝑤𝑤𝑘𝑘|𝑖𝑖𝑗𝑗𝑖𝑖 is the sampling 
interval.  

 
The calculation of selection probabilities at all three stages can be found in previous chapters. 
 

9.2 Non-Response Adjustments  
 
The CRSS sample suffers from non-responses at all three sampling stages: PAR, PJ and PSU. 
Estimation without non-response treatment may be severely biased. This section describes how 
adjustments were made at each sampling stage to mitigate the non-response bias. 
 

9.2.1 Adjustment for Non-Responding PARs  
 
PARs with missing pages and/or non-readable pages cannot be coded therefore are treated as 
non-responding PARs. On the other hand, in some PJs, some crash reports become available for 
listing and sampling after the cut-off date of annual sample selection. For these reasons, PAR 
non-response adjustment is performed by calibrating the estimated PAR counts to the listed PAR 
counts by PSU and PAR strata.  
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The following non-responding PAR adjustment factor 𝑚𝑚𝑃𝑃𝐼𝐼𝑖𝑖𝑠𝑠 is calculated for each PAR stratum 𝑠𝑠 
of PSU 𝑖𝑖: 

𝑚𝑚𝑃𝑃𝐼𝐼𝑖𝑖𝑠𝑠 = � 𝑤𝑤𝑗𝑗|𝑖𝑖𝑤𝑤l|𝑖𝑖𝑗𝑗𝐿𝐿𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠
𝑗𝑗 ∈𝑟𝑟𝑖𝑖

� � 𝑤𝑤𝑗𝑗|𝑖𝑖𝑤𝑤𝑖𝑖𝑘𝑘|𝑖𝑖𝑗𝑗
𝑘𝑘 ∈𝑟𝑟𝑖𝑖𝑗𝑗𝑠𝑠𝑗𝑗 ∈𝑟𝑟𝑖𝑖

�  

Here 𝑟𝑟𝑖𝑖 is the set of responding PJs of PSU 𝑖𝑖. 𝑟𝑟𝑖𝑖𝑗𝑗𝑠𝑠 is the set of responding PARs, and 𝐿𝐿𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠 is the 
number of listed PARs in PAR stratum 𝑠𝑠, PJ 𝐼𝐼, PSU 𝑖𝑖.𝑤𝑤𝑗𝑗|𝑖𝑖 is the PJ weight, and 𝑤𝑤𝑖𝑖𝑘𝑘|𝑖𝑖𝑗𝑗 is the PAR 
weight.  
 
The adjusted PAR weights are computed by multiplying non-responding PAR adjustment factor 
to the PAR weights for the responding PARs and by setting the weights for the non-responding 
PARs set to zero.  

𝑤𝑤𝑖𝑖𝑘𝑘|𝑖𝑖𝑗𝑗
(1) = �

𝑤𝑤𝑖𝑖𝑘𝑘|𝑖𝑖𝑗𝑗 ∗ 𝑚𝑚𝑃𝑃𝐼𝐼𝑖𝑖𝑠𝑠, 𝑖𝑖𝑀𝑀𝑟𝑟 𝑟𝑟𝑒𝑒𝑠𝑠𝑝𝑝𝑀𝑀𝑛𝑛𝑃𝑃𝑖𝑖𝑛𝑛𝑖𝑖 𝑃𝑃𝑃𝑃𝑅𝑅𝑠𝑠                
0,                 𝑖𝑖𝑀𝑀𝑟𝑟 𝑛𝑛𝑀𝑀𝑛𝑛𝑟𝑟𝑒𝑒𝑠𝑠𝑝𝑝𝑀𝑀𝑛𝑛𝑃𝑃𝑖𝑖𝑛𝑛𝑖𝑖 𝑃𝑃𝑃𝑃𝑅𝑅𝑠𝑠    

PAR design weights for the listed but non-sampled PARs are unchanged and kept for duplicate 
PAR adjustment (see section 9.3).  
 

9.2.2 Adjustment for Non-Responding PJs  
 
When a sampled PJ refuses to cooperate, it becomes a non-responding PJ. If PJ non-cooperation 
is identified prior to the data collection of the sampling year, PJ sample is augmented and re-
placement PJ is selected. Then PJ non-response adjustment is conducted before sampling param-
eters are determined. Since this process is conducted in the sample design stage, the adjustment 
is already considered in the PJ design weight. However, if PJ non-cooperation is identified dur-
ing the data collection, PJ non-response adjustment is conducted in the weighting stage. The ad-
justment factor is computed using the weighted PJ MOS response rate for PSU 𝑖𝑖:  

𝑚𝑚𝑃𝑃𝐼𝐼𝑖𝑖 = � 𝑤𝑤𝑗𝑗|𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗
𝑗𝑗∈𝑠𝑠𝑖𝑖

�� 𝑤𝑤𝑗𝑗|𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗
𝑗𝑗∈𝑠𝑠𝑖𝑖

−� 𝑤𝑤𝑗𝑗|𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗
𝑗𝑗∈𝑚𝑚𝑟𝑟𝑖𝑖

��  

Here 𝑠𝑠𝑖𝑖 is the set of sampled PJs (excluding non-responding PJs identified in the design stage), 
and 𝑛𝑛𝑟𝑟𝑖𝑖 is the set of non-responding PJs identified during the data collection in PSU 𝑖𝑖.𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑗𝑗 is 
the finer PJ MOS. 
 
Then, PJ weight is adjusted by multiplying PJ non-response adjustment factor 𝑚𝑚𝑃𝑃𝐼𝐼𝑖𝑖 as:   

𝑤𝑤𝑗𝑗|𝑖𝑖
(1) = �

𝑤𝑤𝑗𝑗|𝑖𝑖 ∗ 𝑚𝑚𝑃𝑃𝐼𝐼𝑖𝑖 for responding PJ                    
0             for non − responding PJ     
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9.2.3 Adjustment for Non-Responding PSUs  
 
A non-responding PSU is a sampled PSU that refuses to cooperate. If PSU non-cooperation is 
identified prior to the data collection of the sampling year, PSU sample is augmented and a re-
placement PSU is selected. PSU non-response adjustment is then conducted before PAR sam-
pling parameters are determined. Since this process is conducted in the sample design stage, the 
adjustment is already considered in the PSU design weight. If PSU non-cooperation is identified 
during the data collection, PSU non-response adjustment is conducted in the weighting stage. 
The adjustment factor is calculated using the weighted PSU response rate by the urbanicity (ur-
ban or rural):  

𝑃𝑃𝑃𝑃𝐼𝐼𝑐𝑐 = � 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝑠𝑠𝑐𝑐

� 𝑤𝑤𝑖𝑖
𝑖𝑖∈𝑟𝑟𝑐𝑐

�  

 
Here 𝑐𝑐 represents the PSU non-response adjustment cell (i.e., urban or rural). 𝑠𝑠𝑐𝑐 is the set of sam-
ple PSUs (excluding non-responding PSUs identified in the design stage), and 𝑟𝑟𝑐𝑐 is the set of re-
sponding PSUs in the cell 𝑐𝑐.  
 
Non-response adjusted PSU weight is computed by multiplying the adjustment factor to the PSU 
weight: 

𝑤𝑤𝑖𝑖
(1) = �𝑤𝑤𝑖𝑖 ∗ 𝑃𝑃𝑃𝑃𝐼𝐼𝑐𝑐 ,     for responding PSU          

0,                  for nonresponding PSU  

For example, in 2016, seven out of the sixty originally selected PSUs were non-responding – re-
sulting a final responding PSU sample of size 53. Adjustment was conducted for the seven non-
responding PSUs in the weighting. In 2017, six of the seven non-responding PSUs were con-
verted to responding PSUs. The 2017 PSU sample was augmented to 61 PSUs – resulting a final 
responding PSU sample of size 60. Since adjustment was conducted for one non-responding PSU 
in design stage, non-response adjustment was not conducted in weighting. 
 

9.3 Adjustment for Duplicates   
 
Police sometimes submit multiple PARs for the same crash with updated information. A crash 
with multiple PARs have multiple chances to be selected. Assume crash 𝑘𝑘 has 𝑛𝑛 PARs in the 
listed PARs: 𝑘𝑘1,𝑘𝑘2, … 𝑘𝑘𝑚𝑚. Let 𝜋𝜋𝑖𝑖𝑘𝑘𝑢𝑢|𝑖𝑖𝑗𝑗 = 1/𝑤𝑤𝑖𝑖𝑘𝑘𝑢𝑢|𝑖𝑖𝑗𝑗

(1)   (𝐼𝐼 = 1, 2, … ,𝑛𝑛) be the inclusion probability of 

each duplicated PAR. Here 𝑤𝑤𝑖𝑖𝑘𝑘𝑢𝑢|𝑖𝑖𝑗𝑗
(1)  is the non-response adjusted PAR weight for the PAR 𝑘𝑘𝑢𝑢. The 

overall inclusion probability for the crash is: 𝜋𝜋𝑖𝑖𝑘𝑘|𝑖𝑖𝑗𝑗 = 1 −∏ �1 − 𝜋𝜋𝑖𝑖𝑘𝑘𝑢𝑢|𝑖𝑖𝑗𝑗�
𝑚𝑚
𝑢𝑢=1 . All identified du-

plicate PARs for the same crash are used to capture the complete and updated information for the 
crash but only one crash record is kept in the final analysis file. Therefore, the PAR weight ad-
justed for duplicates becomes: 

𝑤𝑤𝑖𝑖𝑘𝑘|𝑖𝑖𝑗𝑗
(2) = �

𝑤𝑤𝑖𝑖𝑘𝑘|𝑖𝑖𝑗𝑗
(1)           if a crash does not have duplicate PARs

1 𝜋𝜋𝑖𝑖𝑘𝑘|𝑖𝑖𝑗𝑗⁄     if a crash has duplicate PARs                    
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After non-response adjustments and duplicate adjustment, within-PSU PAR weight and case 
weight are calculated, respectively as: 

𝑤𝑤𝑗𝑗𝑖𝑖𝑘𝑘|𝑖𝑖
(1) = 𝑤𝑤𝑗𝑗|𝑖𝑖

(1) ∗ 𝑤𝑤𝑖𝑖𝑘𝑘|𝑖𝑖𝑗𝑗
(2)  

𝑤𝑤𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘
(1) = 𝑤𝑤𝑖𝑖 ∗ 𝑤𝑤𝑗𝑗𝑖𝑖𝑘𝑘|𝑖𝑖

(1)  

If PSU non-response was conducted in the weighting stage (as in 2016), 𝑤𝑤𝑖𝑖
(1) is used instead of 

𝑤𝑤𝑖𝑖 in the case weight calculation.  
 
In 2016, adjustment for duplicates were conducted after post-stratification (within PSU calibra-
tion – see next section) because duplicated PAR information was available only for coded cases. 
 

9.4 Post-Stratification (Within PSU Calibration)  
 
2016 is the first year of CRSS data collection. To better understand the PJ frame used for PJ 
sample selection, NHTSA verified all the PJs in the PJ frame. Besides the listed cases from the 
sampled PJs, NHTSA also collected annual total crash counts by PAR strata from all non-sam-
pled PJs in the PJ frame. For the non-responding PSUs in 2016, crash counts by PAR strata from 
non-sampled PJs were collected in 2017. The crash counts from sampled PJs and non-sampled 
PJs together can be used for PJ frame updates and within-PSU calibration. NHTSA plans to col-
lect crash counts by PAR strata from non-sampled PJs periodically in the future.  
 
Post-stratification (within-PSU calibration) is conducted as following:  
If PSU-level PAR stratum total crash counts, 𝑇𝑇𝑖𝑖𝑠𝑠, is available (i.e., all sampled PJs and non-sam-
pled PJs are cooperating), the estimated PSU-level PAR stratum total crash counts without dupli-
cates is computed as:  

𝑇𝑇𝑖𝑖𝑠𝑠 = � 𝑤𝑤𝑖𝑖|𝑖𝑖𝑗𝑗𝐿𝐿𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠
𝑗𝑗∈𝑠𝑠𝑖𝑖

+ � 𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠
𝑗𝑗∈𝑚𝑚𝑠𝑠𝑖𝑖

−� 𝑤𝑤𝑗𝑗|𝑖𝑖𝑤𝑤𝑖𝑖|𝑖𝑖𝑗𝑗𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠
𝑗𝑗∈𝑠𝑠𝑖𝑖

 

 
Here 𝐿𝐿𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠 is the number of listed PARs, 𝐶𝐶𝑖𝑖𝑗𝑗𝑠𝑠 is non-sampled crash counts, and  𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠 is the num-
ber of duplicates (i.e., cases with PARERROR=8 in the listed case file) in PSU 𝑖𝑖, PJ 𝐼𝐼, and PAR 
stratum 𝑠𝑠. 𝑠𝑠𝑖𝑖 is the set of sampled PJs and 𝑛𝑛𝑠𝑠𝑖𝑖 is the set of non-sampled PJs in PSU 
𝑖𝑖.∑ 𝑤𝑤𝑗𝑗|𝑖𝑖𝑤𝑤𝑖𝑖|𝑖𝑖𝑗𝑗𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖𝑠𝑠𝑗𝑗∈𝑠𝑠𝑖𝑖   is the estimated number of duplicates in PSU 𝑖𝑖 and stratum 𝑠𝑠. This term 
was not included in the formula in 2016 CRSS because duplicate PAR information was not 
available for all listed PARs and duplicate adjustment was conducted after the post-stratification. 
Then, post-stratification factor  𝑝𝑝𝑀𝑀𝑠𝑠𝐹𝐹𝑖𝑖𝑠𝑠 is calculated for PAR stratum 𝑠𝑠 of PSU 𝑖𝑖 as: 

𝑝𝑝𝑀𝑀𝑠𝑠𝐹𝐹𝑖𝑖𝑠𝑠 = 𝑇𝑇𝑖𝑖𝑠𝑠 � � 𝑤𝑤𝑗𝑗𝑖𝑖𝑘𝑘|𝑖𝑖
(1)

𝑘𝑘∈𝑟𝑟𝑖𝑖𝑗𝑗𝑠𝑠𝑗𝑗∈𝑠𝑠𝑖𝑖
�  

 
Here 𝑟𝑟𝑖𝑖𝑗𝑗𝑠𝑠 is the set of responded PARs in PAR stratum 𝑠𝑠 in PJ 𝐼𝐼 of PSU 𝑖𝑖. 
If 𝑇𝑇𝑖𝑖𝑠𝑠 is not available (i.e., some PJs are non-cooperating), but PSU level total crash count 𝑇𝑇𝑖𝑖𝑊𝑊𝑊𝑊 
(including all PAR strata, and with duplicates) is available, PSU level total crash count without 
duplicates is estimated as:  

𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑖𝑖𝑊𝑊𝑊𝑊 − ∑ 𝑤𝑤𝑗𝑗|𝑖𝑖
(1)𝑤𝑤𝑖𝑖|𝑖𝑖𝑗𝑗𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖𝑗𝑗∈𝑟𝑟𝑖𝑖 . 
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Here 𝐷𝐷𝑖𝑖𝑗𝑗𝑖𝑖 is the number of duplicates (i.e., cases with PARERROR=8 in the listed case file) for 
PSU 𝑖𝑖 and PJ 𝐼𝐼, and 𝑟𝑟𝑖𝑖 is the set of responding PJs in PSU 𝑖𝑖. Again, the subtraction part for dupli-
cate PARs were not used in 2016. Post-stratification factor for PSU 𝑖𝑖 is computed as:  

𝑝𝑝𝑀𝑀𝑠𝑠𝐹𝐹𝑖𝑖𝑠𝑠 = 𝑇𝑇𝑖𝑖 � � 𝑤𝑤𝑗𝑗𝑖𝑖𝑘𝑘|𝑖𝑖
(1)

𝑘𝑘∈𝑟𝑟𝑖𝑖𝑗𝑗𝑗𝑗∈𝑟𝑟𝑖𝑖
�  

 
Here 𝑟𝑟𝑖𝑖𝑗𝑗 is the set of responded PARs in PJ 𝐼𝐼. Notice 𝑝𝑝𝑀𝑀𝑠𝑠𝐹𝐹𝑖𝑖𝑠𝑠 are the same for all 𝑠𝑠.  
If neither PSU level PAR stratum total crash counts 𝑇𝑇𝑖𝑖𝑠𝑠, nor PSU level total crash count 𝑇𝑇𝑖𝑖𝑊𝑊𝑊𝑊 is 
available, post-stratification is not performed: 

𝑝𝑝𝑀𝑀𝑠𝑠𝐹𝐹𝑖𝑖𝑠𝑠 = 1. 
 
By multiplying post-stratification factor, post-stratified within-PSU PAR weight and case weight 
are computed, respectively as: 

𝑤𝑤𝑗𝑗𝑖𝑖𝑘𝑘|𝑖𝑖
(2) = 𝑝𝑝𝑀𝑀𝑠𝑠𝐹𝐹𝑖𝑖𝑠𝑠 ∗ 𝑤𝑤𝑗𝑗𝑖𝑖𝑘𝑘|𝑖𝑖

(1)  

𝑤𝑤𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘
(2) = 𝑤𝑤𝑖𝑖 ∗ 𝑤𝑤𝑗𝑗𝑖𝑖𝑘𝑘|𝑖𝑖

(2)  
 
Again, if PSU non-response adjustment was conducted in weighting stage, 𝑤𝑤𝑖𝑖

(1) is used instead 
of 𝑤𝑤𝑖𝑖 in the case weight calculation. 
 

9.5 Calibration  
 
Case weights are calibrated by benchmarking the Census resident population counts and FARS 
crash counts simultaneously. For each of eight primary PSU strata4 (i.e., four Census regions by 
two urbanicity) 𝑖𝑖, two benchmarks are computed -- 𝑃𝑃𝑔𝑔: Census resident population counts and 
𝐹𝐹𝑔𝑔: FARS crash counts. In order to implement case-level calibration, two calibration variables 
are defined. The first variable, resident population proxy, is:   

𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘 =
𝑤𝑤𝑖𝑖𝑃𝑃𝑖𝑖

∑ ∑ 𝑤𝑤𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘
(2)

𝑘𝑘∈𝑟𝑟𝑖𝑖𝑗𝑗𝑗𝑗∈𝑟𝑟𝑖𝑖

 

 
Here 𝑤𝑤𝑖𝑖 is PSU weight (or 𝑤𝑤𝑖𝑖

(1)if PSU non-response adjustment was conducted in weighting 
stage), and 𝑃𝑃𝑖𝑖 is Census resident population count in PSU 𝑖𝑖. 𝑟𝑟𝑖𝑖 is the set of responding PJs in PSU 
𝑖𝑖, 𝑟𝑟𝑖𝑖𝑗𝑗 is the set of responding PARs in PJ 𝐼𝐼 of PSU 𝑖𝑖, and 𝑤𝑤𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘

(2)  is the post-stratified case weight.  
Notice that:    

� � � 𝑤𝑤𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘
(2) 𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘

𝑘𝑘∈𝑟𝑟𝑖𝑖𝑗𝑗𝑗𝑗∈𝑟𝑟𝑖𝑖𝑖𝑖∈𝑠𝑠𝑔𝑔
 

= � � � 𝑤𝑤𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘
(2)

𝑘𝑘∈𝑟𝑟𝑖𝑖𝑗𝑗𝑗𝑗∈𝑟𝑟𝑖𝑖𝑖𝑖∈𝑠𝑠𝑔𝑔

𝑤𝑤𝑖𝑖𝑃𝑃𝑖𝑖
∑ ∑ 𝑤𝑤𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘

(2)
𝑘𝑘∈𝑟𝑟𝑖𝑖𝑗𝑗𝑗𝑗∈𝑟𝑟𝑖𝑖

= � 𝑤𝑤𝑖𝑖𝑃𝑃𝑖𝑖
𝑖𝑖∈𝑠𝑠𝑔𝑔

 

 

                                                 
4 In 2016, seven primary PSU strata were used by collapsing Midwest rural and West rural. 
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Here 𝑠𝑠𝑔𝑔 is the set of sampled PSUs in the primary PSU stratum 𝑖𝑖.∑ 𝑤𝑤𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖∈𝑠𝑠𝑔𝑔  is an unbiased esti-
mate of the resident population counts of primary PSU stratum 𝑖𝑖 (i.e., 𝑃𝑃𝑔𝑔). In this way, 𝑋𝑋𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘 
is defined as the resident population at case-level. Since it has the same value for all responded 
PARs in a PSU, it acts as a “resident population proxy." 
 
The second variable, fatal crash identifier, is:   

𝑌𝑌𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘 = �1         if the PAR 𝑘𝑘 is a fatal crash            
0         otherwise                                          

 
PAR 𝑘𝑘 is defined as a fatal crash if the corresponding imputed coded case is fatal crash.  
With two case-level calibration variables and two benchmarks, calibration is simultaneously im-
plemented by primary PSU strata using SUDAAN WTADJUST procedure. The procedure pro-
duces calibration factors 𝐶𝐶𝑚𝑚𝐹𝐹𝑖𝑖𝑏𝑏𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘 and the calibrated case weight 𝑤𝑤𝑖𝑖𝑗𝑗𝑖𝑖𝑘𝑘

(3) .  
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10. Imputation 
 

10.1 Item Non-Response  
 
In the CRSS, PARs with missing pages or unreadable pages were treated as non-responding 
PARs (or unit non-response). Non-responding PARs were dropped from the final analysis file. 
PAR weights were adjusted to mitigate potential non-response bias caused by unit non-response 
(see Chapter 9).  
 
For the responding PARs, data are collected from the entries in the PAR (see Appendix A for an 
example of a PAR form) and from the information interpreted from the crash diagrams and the 
police officer’s written summary of the crash. During this process, some data entries (items) 
might be found missing and entered as “unknown” or “not reported,” resulting missing values (or 
item non-response) in the CRSS data file. 
 
Estimates using variables with missing values without treatment may be biased. In the 2016 and 
2017 CRSS, 27 variables used for NHTSA’s publications were treated for item non-response by 
single imputation – i.e., a single plausible value was plugged in for every missing value. Table 9 
shows the variables selected for imputation from the 2016 CRSS accident, vehicle, and person 
files with corresponding item-missing rates. These are the same variables imputed in GES from 
2010 to 2015.  
 
As mentioned in Section 9.4, PAR weights for CRSS fatal crashes are calibrated to FARS fatal 
crashes using reported and imputed fatal crashes. Since PAR weights use imputed injury sever-
ity, the imputation process is completed prior to weighting.  
 
In the CRSS, the missing values (missing entries coded as “unknowns” or “not reported”) were 
imputed by one of the following imputation methods:  
 

• The sequential regression multivariate imputation (SRMI) method (Raghunathan et al., 
2001) 

• The univariate imputation method 
• Logical imputation method  

 
The imputation process starts with some selected accident level variables using the SRMI 
method.  If the SRMI method fails to impute all the missing values, then the univariate method is 
used to impute the remaining missing values. The vehicle level variable BODY_TYP is imputed 
solely using the univariate method.   
 
The same process is then repeated to some selected vehicle level variables and all the person 
level variables: first the SRMI method, then the univariate method until there is no missing 
value. 
 



47 

Finally, the remaining accident level and vehicle level variables are imputed by the logical impu-
tation method. Logical imputation method derives values from the observed and/or the imputed 
values of other variables for the missing items. 
 
In the following sections, we briefly describe the first two imputation methods. See Herbert 
(2019) for more detailed information on how these methods were used to impute missing items 
in the CRSS.  
 
Table 9: Imputed Variables and Item-Missing Rates for 2016 CRSS  

File Name Variable 
Name SAS Label 

Item  
Missing 

Rate 
ACCIDENT ALCOHOL Alcohol Involved 14.03% 
ACCIDENT DAY_WEEK Crash Date (Day of Week) 0.00% 
ACCIDENT HARM_EV First Harmful Event 0.05% 
ACCIDENT HOUR Crash Time (Hour) 0.16% 
ACCIDENT LGT_COND Light Condition 0.66% 
ACCIDENT MINUTE Crash Time (Minute) 0.16% 
ACCIDENT MAN_COLL Manner of Collision 0.33% 
ACCIDENT MAX_SEV Maximum Injury Severity 1.83% 
ACCIDENT NUM_INJ Number of Injured 1.83% 

ACCIDENT RELJCT1 Relation to Junction – Within Interchange 
Area 1.98% 

ACCIDENT RELJCT2 Relation to Junction – Specific Location 0.74% 
ACCIDENT WEATHER Atmospheric Condition 3.40% 
VEHICLE IMPACT1 Area of Impact – Initial Contact Point 2.01% 
VEHICLE BODY_TYP Body Type 2.54% 
VEHICLE VEH_ALCH Driver Drinking in Vehicle 9.71% 
VEHICLE HIT_RUN Hit and Run 0.01% 
VEHICLE MAX_VSEV Max Injury Severity 4.32% 
VEHICLE MOD_YEAR Model Year 3.72% 
VEHICLE P_CRASH1 Pre-Event Movement  1.52% 
VEHICLE M_HARM Most Harmful Event 0.03% 
VEHICLE NUM_INJV Number Injured in Vehicle 4.32% 
PERSON AGE Age 5.42% 
PERSON EJECTION Ejection 2.08% 
PERSON INJ_SEV Injury Severity 3.45% 
PERSON DRINKING Police-Reported Alcohol Involvement 29.75% 
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File Name Variable 
Name SAS Label 

Item  
Missing 

Rate 
PERSON SEAT_POS Seating Position 1.29% 
PERSON SEX Sex 3.41% 

 

10.2 The Sequential Regression Multivariate Imputation  
 
The sequential regression multivariate imputation (SRMI) method first models the variable to be 
imputed by other covariates in the file and then uses the fitted model to generate values to impute 
the missing values. The following is a brief description of the SRMI imputation process.  
 

1) From the sample file, identify the variables without missing values: �𝑚𝑚1, 𝑚𝑚2, … , 𝑚𝑚𝑝𝑝�. 
2) Sort the variables to be imputed by item missing rates in an ascending order (variable 

with the lowest item missing rate first): {𝐼𝐼1,𝐼𝐼2, … ,𝐼𝐼𝑘𝑘}. 
3) Regress 𝐼𝐼1 on �𝑚𝑚1, 𝑚𝑚2, … , 𝑚𝑚𝑝𝑝�. 𝐼𝐼1 may be a continuous, binary, categorical, or count varia-

ble. Accordingly, a normal linear regression model, logistic regression model, general-
ized logit regression model, or Poisson log-linear model was used as the regression model 
with a flat prior distribution for the parameters. A stepwise regression algorithm automat-
ically selects the covariates.  

4) For each missing value in 𝐼𝐼1, draw a single value from the posterior distribution specified 
by the fitted model for 𝐼𝐼1 to impute the missing value until there is no missing value in 
𝐼𝐼1.  

5) For 𝑖𝑖 =2 to 𝑘𝑘, regress 𝐼𝐼𝑖𝑖 on �𝑚𝑚1, 𝑚𝑚2, … , 𝑚𝑚𝑝𝑝, 𝐼𝐼1, … , 𝐼𝐼𝑖𝑖−1� assuming a flat prior for the re-
gression parameters. For each missing value in 𝐼𝐼𝑖𝑖, draw a single value from the posterior 
distribution specified by the fitted model to impute the missing value.  

6) For 𝑖𝑖 =1 to 𝑘𝑘, regress imputed 𝐼𝐼𝑖𝑖 on 𝑚𝑚′𝑠𝑠 and all other 𝐼𝐼′𝑠𝑠 except 𝐼𝐼𝑖𝑖 itself: 
�𝑚𝑚1, 𝑚𝑚2, … , 𝑚𝑚𝑝𝑝,𝐼𝐼1, … ,𝐼𝐼𝑖𝑖−1,𝐼𝐼𝑖𝑖+1, … 𝐼𝐼𝑘𝑘�. Overwrite each value of 𝐼𝐼𝑖𝑖 previously imputed by 
redrawing a single value from the posterior distribution specified by the newly fitted 
model for 𝐼𝐼𝑖𝑖.  

7) Repeat step 6) until either stability in the imputed values or the predetermined number of 
iterations are reached. 

 
SRMI method was implemented in the free SAS callable software – IVEware5 . IVEware was 
used in the CRSS imputation. In addition, IVEware allows the imputation of a variable to:  
 

• Be performed to a subset of observations that meet certainty condition.  
• Restrict the imputed values to certain range of values. 

 
IVEware imputation may terminate prematurely upon reaching the predetermined number of it-
erations or other convergence criteria before all missing values are imputed. Additionally, some 

                                                 
5 Raghunathan, T., Solenberger, P., Berglund, P., & van Hoewyk, J. (2016). IVEware: Imputaion and Variance Esti-
mation Software (version 0.3), www.src.isr.umich.edu/software/ 

https://www.src.isr.umich.edu/software/
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imputed values may not conform to the permissible values of the data element. For example, 
“Sleet” may be assigned to a missing value of variable WEATHER for a crash happened in June 
in the South. An editing and consistency checking process is performed after IVEware imputa-
tion. When the SRMI method fails or consistency checks fail, the univariate imputation is used to 
impute the remaining missing values.  

10.3 The Univariate Imputation  
 
The univariate imputation method is also known as the simple random sampling with-replace-
ment imputation. The following is a description of the univariate imputation method:  
 

1. First, the values of the variable to be imputed, y, are grouped into two groups: the non-
missing values (observed values or values already imputed by the SMRI method), and the 
missing values (non-observed values that have not been imputed by SMRI method). 

2. For each missing value, randomly select one value from the non-missing group with re-
placement and assign the selected non-missing value to the missing value.  

 
This univariate imputation method preserves the non-missing values’ sample distribution but ig-
nores any correlation with other variables. Variable BODY_TYP is the only variable only im-
puted by the univariate imputation method.  
 
After the univariate imputation, data inconsistencies may still occur. These anomalies are re-
viewed and corrected.  
 
The imputed maximum injury severity variables, MAXSEV_IM in the accident file and 
MAXVSEV_IM in the vehicle file, were both derived from INJSEV_IM in the person file. The 
imputed police reported alcohol involvement variables, ALCHL_IM in the accident file and 
V_ALCH_IM in the vehicle file, were both derived from PERALCH_IM in the person file. The 
imputed number of injured variables, NO_INJ_IM in the accident file and NUMINJ_IM in the 
vehicle file were both derived based on INJSEV_IM. 
 
The imputed variables were named by their original names plus suffix “_IM”, e.g., if the original 
variable is AGE, then the imputed variable is AGE_IM. Table 10 lists the names and labels of 
the imputed variables.  
 
  



50 

Table 10: Names and Labels for the Imputed Variables 

File Name Original  
Variable Name 

Imputed  
Variable Name SAS Label 

ACCIDENT ALCOHOL ALCHL_IM Imputed Drinking in Crash 
ACCIDENT DAY_WEEK WKDY_IM Imputed Day of the Week 
ACCIDENT HARM_EV EVENT1_IM Imputed First Harmful Event 
ACCIDENT HOUR HOUR_IM Imputed Hour  
ACCIDENT LGT_COND LGTCON_IM Imputed Lgt Condition 
ACCIDENT MINUTE MINUTE_IM Imputed Minute 
ACCIDENT MAN_COLL MANCOL_IM Imputed Manner of Collision 
ACCIDENT MAX_SEV MAXSEV_IM Imputed Maximum Injury Severity 
ACCIDENT NUM_INJ NO_INJ_IM Imputed Number Injured in Crash 
ACCIDENT RELJCT1 RELJCT1_IM Relation to Junction – Within Interchange Area 
ACCIDENT RELJCT2 RELJCT2_IM Imputed Relation to Junction - Junction 
ACCIDENT WEATHER WEATHR_IM Imputed Weather Condition 
VEHICLE IMPACT1 IMPACT1_IM Imputed Area of Impact-Initial 
VEHICLE BODY_TYP BDYTYP_IM Imputed Body Type 
VEHICLE VEH_ALCH V_ALCH_IM Imputed Driver Drinking in Vehicle 
VEHICLE HIT_RUN HITRUN_IM Imputed Hit and Run 
VEHICLE MAX_VSEV MXVSEV_IM Imputed Maximum Injury in Vehicle 
VEHICLE MOD_YEAR MDLYR_IM Imputed Model Year 
VEHICLE P_CRASH1 PCRASH1_IM Imputed Vehicle P_Crash1 
VEHICLE M_HARM VEVENT_IM Imputed Most Harmful Event 
VEHICLE NUM_INJV NUMINJ_IM Imputed Number Injured in Vehicle 
PERSON AGE AGE_IM Imputed Age 
PERSON EJECTION EJECT_IM Imputed Ejection 
PERSON INJ_SEV INJSEV_IM Imputed Injury Severity 

PERSON DRINKING PERALCH_IM Imputed Police Rep. Alcohol Inv. 

PERSON SEAT_POS SEAT_IM Imputed Seating Position 

PERSON SEX SEX_IM Imputed Sex 
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APPENDIX A. An Example of a PAR 
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APPENDIX B. Excluded/Included Alaska and Hawaii Counties 

 
Excluded Counties Alaska 

FIPS Code County Name 
02013 Aleutians East Borough 
02016 Aleutians West Census Area 
02050 Bethel Census Area 
02060 Bristol Bay Borough 
02070 Dillingham Census Area 
02100 Haines Borough 
02105 Hoonah-Angoon Census Area 
02110 Juneau City and Borough 
02130 Ketchikan Gateway Borough 
02150 Kodiak Island Borough 
02164 Lake and Peninsula Borough 
02180 Nome Census Area 
02185 North Slope Borough 
02188 Northwest Arctic Borough 
02195 Petersburg Census Area 
02198 Prince of Wales-Hyder Census 

 02220 Sitka City and Borough 
02230 Skagway Municipality 
02261 Valdez-Cordova Census Area 
02270 Wade Hampton Census Area 
02275 Wrangell City and Borough 
02282 Yakutat City and Borough 
02290 Yukon-Koyukuk Census Area 

 
Included Counties Alaska 

FIPS Code County Name PSU MOS 
02020 Anchorage Municipality 10033.67 02170 Matanuska-Susitna Borough 
02068 Denali Borough 

2812.77 02090 Fairbanks North Star Borough 
02240 Southeast Fairbanks Census Area 
02122 Kenai Peninsula Borough 1489.59 
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Excluded Counties Hawaii 

FIPS Code County Name 
15005 Kalawao County 
15007 Kauai County 
15009 Maui County 

 
Included Counties Hawaii 

FIPS Code County Name PSU MOS 
15001 Hawaii County 7624.65 
15003 Honolulu County 33361.12 
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APPENDIX C. CRSS PSU Strata for the Five Scenarios 

Scenario Sample Order Scenario-1 Scenario-2 Scenario-3 Scenario-4 Scenario-5 
#Strata 51 38 26 12 8 

Strata 

17 1-01 1-01 1-01 

1-01 

Northeast  
Urban 

27 
24 1-02 

1-02 1-02 83 
50 1-03 93 
16 1-04 1-03 

1-03 

1-02 

52 
68 1-05 1-04 71 
33 1-06 1-05 73 
6 1-07 

1-06 1-04 84 
40 1-08 100 
13 2-01 2-01 2-01 

2-01 Northeast  
Rural 

29 
4 2-02 2-02 2-02 38 

14 3-01 
3-01 3-01 

3-01 Midwest Urban 

89 
45 3-02 91 
48 3-03 3-02 

3-02 67 
41 3-04 3-03 75 
7 3-05 

3-04 
3-03 

90 
65 3-06 78 
44 3-07 3-05 63 
25 4-01 4-01 4-01 

4-01 Midwest Rural 

37 
59 4-02 

4-02 
4-02 

86 
11 4-03 98 
8 4-04 4-03 69 

12 5-01 5-01 
5-01 

5-01 SouthUrban 

74 
39 5-02 5-02 57 
22 5-03 

5-03 5-02 82 
30 5-04 77 
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CRSS PSU Strata for the Five Scenarios (continued) 
Scenario Sample Order Scenario-1 Scenario-2 Scenario-3 Scenario-4 Scenario-5 
#Strata  51 38 26 12 8 

Strata 

42 5-05 
5-04 5-03 

5-02 

SouthUrban 

79 
21 5-06 88 
20 5-07 5-05 

5-04 61 
35 5-08 5-06 64 
58 5-09 5-07 

5-05 

5-03 

66 
15 5-10 

5-08 76 
43 5-11 97 
23 5-12 5-09 

5-06 

60 
51 5-13 

5-10 95 
72 5-14 101 
36 6-01 

6-01 6-01 

6-01 South Rural 

96 
1 6-02 99 

49 6-03 6-02 
6-02 56 

10 6-04 6-03 55 
26 6-05 

6-04 6-03 92 
46 6-06 81 
32 7-00 (LA) 7-00 (LA) 7-00 (LA) 

7-01 

West Urban 

62 7-01 
7-01 

7-01 

80 
9 7-02 94 

19 7-03 7-02 54 
2 7-04 

7-03 7-02 

7-02 

85 
47 7-05 87 
28 7-06 7-04 

7-03 70 
18 7-07 7-05 53 
3 8-01 8-01 8-01 

8-01 West Rural 34 
5 8-02 8-02 8-02 31 
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