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1. Introduction 
 
The National Highway Traffic Safety Administration developed and implemented the National 
Automotive Sampling System in the 1970s to make estimates of the motor vehicle crash 
experience in the United States. In 1988 NHTSA split the NASS into two surveys, the General 
Estimates System and the Crashworthiness Data System. Since then the same data collection sites 
have been used for GES and CDS data collection. Given the shifts in population and the vehicle 
fleet, and the changing analytic needs of the safety community, Congress authorized NHTSA to 
modernize its crash data collection system. 
 
NHTSA implemented two new annual surveys, the Crash Report Sampling System - which 
replaced the GES, and the Crash Investigation Sampling System - which replaced the CDS.  

 
This document first provides an overview of the CISS sample design (Chapter 2) and weighting 
procedure (Chapter 3). The sample design and weighting procedures determine the design option 
associated with the variance estimation method to be used in our examples and need to be 
accounted if users choose to use other alternative analysis methods.  
 
Chapter 4 describes some basic concepts on the analysis of complex survey data which justifies 
the practice of using finite-population point estimates and design variance estimates when making 
inferences about model parameters.  
 
Chapter 5 provides examples of making estimates using CISS and CDS data and discusses issues 
related to CISS data analysis. Finally, Chapter 6 catalogs frequently asked questions and answers 
on sampling and estimation of CDS/CISS. 
 
While this document provides a broad overview of the design of CISS, a supplemental NHTSA 
technical report, Crash Investigation Sampling System: Sample Design and Weighting (Zhang et 
al., in press) to be published by NHTSA describes the CISS sample design and weighting 
procedures in greater detail. 
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2. The CISS Sample Design  
 
CISS was designed independent of other NHTSA surveys. The target population for the CISS is 
all police-reported motor vehicle crashes on a traffic way, each involving a passenger vehicle1 
and in which a passenger vehicle is towed from the scene for any reason. This definition is 
slightly different from the CDS, which required that a vehicle be towed due to damage. This 
change was made because sometimes it was difficult to determine why a vehicle was towed.  
 
Because a direct collection of crashes in the nation is infeasible, the CISS crash sample is 
selected in multiple stages to produce a nationally representative probability sample.  
 
At the first stage, 3,117 counties in the United States were grouped into 1,784 Primary Sampling 
Units. A PSU in the CISS is either a county or a group of counties. U.S. territories, some remote 
counties in Alaska, and small islands of Hawaii were excluded. PSUs have been formed in such a 
way that there is a 90 percent chance to have at least 5 fatal crashes every year inside each PSU 
and the end-to-end distance of a PSU was 65 miles for an urban area and 130 miles for a rural 
area. 
 
The 1,784 PSUs were stratified into 24 strata by the four Census regions, urban/rural, total 
highway/primary/secondary road miles, and total expected number of crashes. Each of the 1,784 
PSUs in the frame was assigned a measure of size (MOS) equal to the combination of its 
estimated seven types (defined by injury severity and vehicle model year) of crash counts.  
 
From each of the 24 PSU strata, 2 PSUs were selected by a probability proportional-to-size 
(PPS) sampling method. In addition, one large PSU was selected with certainty. This resulted in 
a total of 49 PSUs. Then a sequence of PSU sub-samples was selected from the 49 PSUs with 
decreasing sample sizes. In this process the PSU strata were collapsed when necessary. This 
process produced a sequence of nested PSU samples. These nested PSU samples allow NHTSA 
to change the PSU sample size without reselecting the sample. The final PSU sample is the result 
of multiphase sampling and the PSU sample selected in such a way remained generally PPS.  
 
For the 2017 CISS, for example, 24 PSUs were selected from 12 PSU strata (2 PSUs selected per 
stratum) using the above process. Consequently, the PSU sampling rate was very low in each 
stratum. Because of the reduction of PSU sample size (from 49 to 24), no PSU was selected with 
certainty. All sampled PSUs cooperated with NHTSA’s data collection request.  
 
The Secondary Sampling Units are police jurisdictions. Within each selected PSU, PJs were 
stratified into three PJ strata by their estimated measure of size - a combination of crash counts in 
six categories of interest. The Pareto sampling method (Rosén, 1997) was used to select PJ 
samples from each PJ stratum. The Pareto sampling method produces overlapping samples when 
a new sample is reselected. This reduces the changes to the existing PJ sample when a new PJ 
sample needs to be selected because of PJ frame (the collection of all PJs in the selected PSU) 
changes. The PJ inclusion probability under the Pareto sampling is approximately PPS (Rosén, 
1997). In 2017 CISS, across the 24 sampled PSUs, a total of 182 PJs were selected and 168 PJs 

 
1 CISS-applicable vehicles are the same as CDS-applicable vehicles: passenger cars, light trucks, vans, and sport 
utility vehicles with gross vehicle weight rating (GVWR) less than 10,000 lbs. 
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cooperated. Weight adjustments were made to mitigate the potential bias caused by the 14 non-
responding PJs. 
 
The Tertiary Sampling Units are PARs. Every week, the CISS data collectors receive PARs 
accumulated since the last sample selection from all the selected PJs in the same sampled PSU. 
All new PARs are grouped into ten PAR domains (see Table 1). These ten PAR domains are 
formed based on the results of NHTSA’s internal and public data needs. The PAR domains are 
used to oversample the following important analysis domains to ensure enough cases are selected 
into the sample: 

• Crashes involving occupant killed; 
• Crashes involving occupant injured or possibly injured in a recent model year passenger 

vehicle (vehicle no more than 4 year old); and  
• Crashes involving occupant severely injured in a passenger vehicle.  

 
An MOS is then assigned to each PAR. This MOS is PSU-, PJ-, and PAR-domain-specific. It is 
determined to ensure the desired sample allocation defined in Table 1 can be achieved.  
 
All the PARs in the same PSU are pooled together, and a PAR sample is selected using a Pareto 
sampling method. As in CDS, CISS PAR sample selection is conducted weekly.  
 
After the initial PAR sample has been selected, if a vehicle that defines the selected PAR’s 
domain is unavailable for data collection, the original PAR sample size is augmented and the 
PAR sample is reselected using a Pareto sampling method so a replacement PAR can be included 
to replace the non-responding PAR. In 2017 there were 288 PARs added to the original sample 
to replace the non-responding PARs. This resulted a total of 2,331 selected cases. After 
excluding the non-responding cases and the 8 out-of-scope cases, a total of 2,035 cases were kept 
in the final analysis file. This augment increases the selected sample size while keeping the 
respondent (i.e., investigated) sample size approximately equal to the initial target PAR sample 
size within each PSU.   
 
For each selected PAR, CISS technicians collects information about the crash, the vehicles 
involved in the crash, and the occupants involved in the crash. Trained crash investigators obtain 
data from crash sites by studying crash evidence such as skid marks, fluid spills, broken glass, 
and bent guard rails. They locate the vehicles involved, photograph them, measure the crash 
damage, and identify interior locations that were struck by the occupants. The researchers also 
interview crash victims and review their medical records to determine the nature and severity of 
injuries.  
 
Because of the low PSU sampling rates, PSU sample can be approximately viewed as selected 
with-replacement. This simplifies the variance estimation.  
 
For more details about CISS sample design, see the upcoming NHTSA technical report, Crash 
Investigation Sampling System: Sample Design and Estimation (Zhang et al., in press).  
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Table 1: CISS PAR Domains, Crash Sample Size Allocation, and Population Estimates 

CISS 
Analysis 
Domains 

Description 

Target 
Percent of 

Sample 
Allocation 

Estimated 
Population 

Population 
Percent 

1 At least one occupant of towed passenger 
vehicle is killed  5%  9,576 0.51% 

2 

Crashes not in Stratum 1 involving: 
• A recent model year passenger vehicle in 

which at least one occupant is 
incapacitated 

10%  17,304 0.93% 

3 

Crashes not in Stratum 1 or 2 involving: 
• A recent model year passenger vehicle in 

which at least one occupant is non-
incapacitated, possibly injured or injured 
but severity is unknown. 

20%  162,037 8.71% 

4 
Crashes not in Stratum 1-3 involving: 
• A recent model year passenger vehicle in 

which all occupants are not injured 
15%  325,332 17.48% 

5 

Crashes not in Stratum 1-4 involving: 
• A mid-model year passenger vehicle in 

which at least one occupant is 
incapacitated 

6%  23,739 1.28% 

6 

Crashes not in Stratum 1-5 involving: 
• A mid-model year passenger vehicle in 

which at least one occupant is non-
incapacitated, possibly injured or injured 
but severity is unknown 

12%  210,407 11.31% 

7 
Crashes not in Stratum 1-6 involving: 
• A mid-model year passenger vehicle in 

which all occupants are not injured  
10%  418,702 22.51% 

8 

Crashes not in Stratum 1-7 involving: 
• An older model year passenger vehicle in 

which at least one occupant is 
incapacitated  

6% 28,690 1.54% 

9 

Crashes not in Stratum 1-8 involving:  
• An older model year passenger vehicle in 

which at least one occupant is non-
incapacitated, possibly injured or injured 
but severity is unknown. 

10%  220,815 11.87% 

10 
Crashes not in Stratum 1-9 involving:  
• An older model year passenger vehicle in 

which all occupants are not injured 
6%  443,151 23.83% 

Total  100% 1,859,752 100% 
 
Source: The population estimates were made using 2011 CDS data. 
Note: This table uses the following definitions: 

 Recent Model Year (or Late Model Year) Vehicles: Vehicles that are <= 4 years old. 
 Mid-model Year Vehicles: 5- to 9-year-old vehicles 
 Older Model Year Vehicles: Vehicles that are 10 years old or older 

  



 

5 

3.  CISS Weighting Procedures 
 

The CISS sample is the result of probability sampling featuring stratification, clustering, and 
selection with unequal probabilities. Because of these complex design features, the CISS sample 
is not a simple random sample and users need to use proper weights to produce estimates 
reasonably robust against selection biases. The 2017 CISS weights were created with the 
following steps: 

• Calculate the base weights (the inverse of selection probabilities) at all three stages (PSU, 
PJ, and PAR).  

• Adjust the base weights for PJ and PAR non-response2 to correct potential nonresponse 
bias. 

• Calibrate the PJ and the PAR weights using the PSU level total PAR stratum PAR counts 
to further correct for potential Pareto weighting error, nonresponse and coverage biases, 
and increase the precision of the estimates.  

• Calibrate PSU weights to capture population shift.  
• Truncate the large case weights. Case weights larger than 3 percent of the PAR domain 

weight total are truncated to 3 percent of the PAR domain weight total and the excessive 
weights are redistributed to other untruncated weights in the same PAR domain (a form 
of additional calibration).   

• Adjusted Jackknife replicate weights are created. Jackknife variance estimation method 
assumes the PSU sample has been selected with-replacement. These adjusted Jackknife 
replicate weights capture the impacts of weight adjustments in the variance estimation.  

 
The final weight variable for the CISS estimation is CASEWGT. The Jackknife replicate weights 
are JKWGT1 - JKWGT24 for 2017.  
 
See Crash Investigation Sampling System: Sample Design and Weighting, (Zhang et al., in 
press) for more detailed information on the CISS weighting procedure.  
  

 
2 A PAR is non-responding if the vehicle that defines the PAR’s domain is unavailable for inspection. Non-
responding PJs are the PJs that refused to cooperate.  
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4. Basic Concepts of Complex Survey Data Analysis 

 
In this chapter, we introduce some basic concepts of complex survey data analysis which 
explains why we can estimate a model parameter by estimating a related finite-population 
parameter and use the sampling variance with respect to the sample selection to approximate the 
total variance. This discussion justifies the approach we use in all our examples.  
 

4.1  Model Parameter Estimation  
 
In standard statistical theory, we often assume that the data generated by nature or by a 
laboratory experiment follows a stochastic model. The model parameter that indexes the 
underlining model is of interest and needs to be estimated. For example, consider fatal indicators 
{𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑁𝑁}: 
 

𝑦𝑦𝑘𝑘 = �1, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐ℎ       
0, 𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐ℎ , 𝑘𝑘 = 1, 2, …𝑁𝑁 

 
observed from the 𝑁𝑁 CISS crashes reported in the year 2017. One may view these observations 
as outcomes of independent and identical Bernoulli trials indexed by model parameter 𝜃𝜃:  
 

𝑦𝑦𝑘𝑘~𝐵𝐵𝐵𝐵𝑐𝑐𝑛𝑛(𝜃𝜃), 𝑘𝑘 = 1, 2, …𝑁𝑁  
 
And use the maximum likelihood estimator: 
 

𝜃𝜃�𝑁𝑁 =
1
𝑁𝑁
� 𝑦𝑦𝑘𝑘

𝑁𝑁

𝑘𝑘=1
 

 
to estimate the model parameter 𝜃𝜃. If this model is correct, 𝜃𝜃�𝑁𝑁 is unbiased with respect to the model 
for 𝜃𝜃: 
 

𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝜃𝜃�𝑁𝑁� =
1
𝑁𝑁
� 𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑁𝑁

𝑘𝑘=1
(𝑦𝑦𝑘𝑘) =  𝜃𝜃 

 
with variance: 
 

𝑉𝑉𝑓𝑓𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝜃𝜃�𝑁𝑁� =
1
𝑁𝑁2� 𝑉𝑉𝑓𝑓𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑁𝑁

𝑘𝑘=1
(𝑦𝑦𝑘𝑘) =

𝜃𝜃(1 − 𝜃𝜃)
𝑁𝑁

= 𝑂𝑂(𝑁𝑁−1). 

 
Here 𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and 𝑉𝑉𝑓𝑓𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 are the expectation and variance with respect to model 𝐵𝐵𝐵𝐵𝑐𝑐𝑛𝑛(𝜃𝜃). Notice 
when 𝑁𝑁 is very large, the model variance 𝑉𝑉𝑓𝑓𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝜃𝜃�𝑁𝑁� becomes very small.  
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4.2  Finite Population Parameter Estimation 
 
In the previous section, the model parameter 𝜃𝜃 is estimated by: 
 

𝜃𝜃�𝑁𝑁 =
1
𝑁𝑁
� 𝑦𝑦𝑘𝑘

𝑁𝑁

𝑘𝑘=1
. 

 
However, the quantity 𝜃𝜃�𝑁𝑁 = ∑ 𝑦𝑦𝑘𝑘𝑁𝑁

𝑘𝑘=1 𝑁𝑁⁄  itself is also of interest because it gives a snapshot of 
the nation’s fatal crash proportion in 2017. Similar statistics include 𝑁𝑁 (2017 total number of 
CISS crashes) and ∑ 𝑦𝑦𝑘𝑘𝑁𝑁

𝑘𝑘=1  (2017 total number of fatal CISS crashes) etc. In other words, in 
addition to model parameters, we may also be interested in the functions of a set of realized 
(fixed) values. For example, the collection of all realized 2017 CISS crashes 𝑈𝑈 = {𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑁𝑁} 
can be viewed as a finite population. The functions of the attributes of the finite population, such 
as 𝜃𝜃�𝑁𝑁, 𝑁𝑁, and ∑ 𝑦𝑦𝑘𝑘𝑁𝑁

𝑘𝑘=1  are called finite population parameters.  
 
Unfortunately, it is often cost-prohibitive to observe all the units in the finite population. Instead, 
a probability sample is selected and observed to estimate finite-population parameters.   
 
A probability sample 𝑐𝑐 is a subset of the finite population 𝑈𝑈 selected under a probability 
sampling design. The key role of the probability sampling design is to define a probability space 
on 𝑈𝑈 so we can use the sample 𝑐𝑐 to estimate and make inferences about the finite population 
parameters. Chapters 2 and 3 briefly described how a probability sample of crashes was selected 
from a finite population of crashes for CISS data collection and how the final CISS weights were 
calculated.  
 
It should be noted that for various reasons, it is inevitable to use design features such as 
stratification, clustering, and unequal selection probabilities to select the probability sample. For 
example, cluster sampling was used because it is not cost-efficient to obtain all crashes in the 
United States in order to directly select a one-stage crash sample. Crashes in important analysis 
domains were assigned larger selection probabilities to ensure enough sample sizes for analysis. 
Stratification was used at all stages to reduce the sampling variance and to produce more 
balanced sample (by assuring, for example, that sampled PSUs are found in all regions and 
urbanicities of the United States). These design features might induce a stochastic dependence 
among the resulting observations and alter the original distribution. As a result, the final sample 
is not a simple random sample, and the sampled observations may no longer follow the same 
model as the population from which they were drawn.  
 
Under a probability sampling design, every unit 𝑢𝑢𝑘𝑘 in the finite population 𝑈𝑈 = {𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑁𝑁 } 
has a positive probability 𝜋𝜋𝑘𝑘 of being selected into the sample 𝑐𝑐. Assume sample 𝑐𝑐 =
{𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝐵𝐵 } has fixed sample size 𝑛𝑛 ≤ 𝑁𝑁 and define the selection indicator as: 
 

𝐼𝐼𝑘𝑘 = �1, 𝑖𝑖𝑓𝑓 𝑢𝑢𝑘𝑘 𝑖𝑖𝑐𝑐 𝑐𝑐𝐵𝐵𝑓𝑓𝐵𝐵𝑐𝑐𝑓𝑓𝐵𝐵𝑠𝑠 𝑖𝑖𝑛𝑛𝑓𝑓𝑛𝑛 𝑐𝑐
0, 𝑛𝑛𝑓𝑓ℎ𝐵𝐵𝑐𝑐𝑒𝑒𝑖𝑖𝑐𝑐𝐵𝐵                         (𝑘𝑘 = 1,2, … ,𝑁𝑁) 

 
The inverse of the inclusion probability 𝑒𝑒𝑘𝑘 = 1 𝜋𝜋𝑘𝑘⁄  can be used to construct design-based point 
estimators of finite population parameters (i.e., they are unbiased or nearly unbiased under the 
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probability-sampling design). For example, let the fatal indicator 𝑦𝑦𝑘𝑘 be an attribute observed 
from crash 𝑢𝑢𝑘𝑘, then 

𝜃𝜃�𝐵𝐵 =
1
𝑁𝑁
� 𝑒𝑒𝑘𝑘𝑦𝑦𝑘𝑘
𝑢𝑢𝑘𝑘∈𝑠𝑠

 

 
is design unbiased for the 2017 fatality proportion: 𝜃𝜃�𝑁𝑁 = ∑ 𝑦𝑦𝑘𝑘𝑁𝑁

𝑘𝑘=1 𝑁𝑁⁄ : 

𝐸𝐸𝐷𝐷�𝜃𝜃�𝐵𝐵� = 𝐸𝐸𝐷𝐷 �
1
𝑁𝑁
� 𝑒𝑒𝑘𝑘𝑦𝑦𝑘𝑘
𝑢𝑢𝑘𝑘∈𝑠𝑠

� = 𝐸𝐸𝐷𝐷 �
1
𝑁𝑁
� 𝑒𝑒𝑘𝑘𝐼𝐼𝑘𝑘𝑦𝑦𝑘𝑘

𝑁𝑁

𝑘𝑘=1
� =

1
𝑁𝑁
� 𝑦𝑦𝑘𝑘

𝑁𝑁

𝑘𝑘=1
= 𝜃𝜃�𝑁𝑁 

 
Here the expectation 𝐸𝐸𝐷𝐷 is with respect to the probability space defined by the sampling design.  
The sampling/design variance of 𝜃𝜃�𝐵𝐵, 𝑉𝑉𝑓𝑓𝑐𝑐𝐷𝐷�𝜃𝜃�𝐵𝐵�, is the variance of estimator 𝜃𝜃�𝐵𝐵 under repeated 
probability sampling. 𝑉𝑉𝑓𝑓𝑐𝑐𝐷𝐷�𝜃𝜃�𝐵𝐵� depends on both the estimator 𝜃𝜃�𝐵𝐵 and the sample design. It 
should be noted that the point estimator 𝜃𝜃�𝐵𝐵 is design unbiased for the finite population parameter 
𝜃𝜃�𝑁𝑁 regardless of whether the model assumed to generate the finite population is true or not. 

4.3 Two-Step Sampling Procedure 
 
Combining the concepts in the two previous sections, survey data can be viewed as the result of 
the following two-step sampling procedure (Hartley & Sielken, 1975):  

• Step 1: A finite population 𝑈𝑈 of size 𝑁𝑁 is generated by an infinite super-population model 
ξ.  

• Step 2: A probability sample 𝑐𝑐 of size 𝑛𝑛 ≤ 𝑁𝑁 is selected from the finite population 𝑈𝑈.  

That is: 
𝑀𝑀𝑛𝑛𝑠𝑠𝐵𝐵𝑓𝑓 ξ 

𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵
���������  𝑈𝑈 = {𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑁𝑁 }  

𝑆𝑆𝐵𝐵𝑆𝑆𝐵𝐵𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵
�������   𝑐𝑐 = {𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝐵𝐵 } 

 
Under this two-step sampling view, the design unbiased point estimator is not only an unbiased 
estimator of the finite population parameter 𝜃𝜃�𝑁𝑁 under the probability based design, but also an 
unbiased estimator of the super-population model parameter 𝜃𝜃 if the (assumed) model is correct:  
 

𝐸𝐸𝜉𝜉𝐷𝐷�𝜃𝜃�𝐵𝐵� = 𝐸𝐸𝜉𝜉�𝐸𝐸𝐷𝐷�𝜃𝜃�𝐵𝐵�� = 𝐸𝐸𝜉𝜉�𝜃𝜃�𝑁𝑁� = 𝜃𝜃 
 
Here the expectation 𝐸𝐸𝜉𝜉𝐷𝐷 is with respect to the two-step sampling process: the data generation by 
the model and the sample selection by the sample design. The total variance of a design unbiased 
point estimator 𝜃𝜃�𝐵𝐵 under this two-step sampling view can be decomposed as: 
 

𝑉𝑉𝑓𝑓𝑐𝑐𝜉𝜉𝐷𝐷�𝜃𝜃�𝐵𝐵� = 𝐸𝐸𝜉𝜉�𝑉𝑉𝑓𝑓𝑐𝑐𝐷𝐷�𝜃𝜃�𝐵𝐵�� + 𝑉𝑉𝑓𝑓𝑐𝑐𝜉𝜉�𝐸𝐸𝐷𝐷�𝜃𝜃�𝐵𝐵�� 
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Since 𝐸𝐸𝐷𝐷�𝜃𝜃�𝐵𝐵� = 𝜃𝜃�𝑁𝑁 and 𝑉𝑉𝑓𝑓𝑐𝑐𝜉𝜉�𝜃𝜃�𝑁𝑁� = 𝑂𝑂(𝑁𝑁−1), therefore 𝑉𝑉𝑓𝑓𝑐𝑐𝜉𝜉�𝐸𝐸𝐷𝐷�𝜃𝜃�𝐵𝐵�� = 𝑉𝑉𝑓𝑓𝑐𝑐𝜉𝜉�𝜃𝜃�𝑁𝑁� = 𝑂𝑂(𝑁𝑁−1). 
So, when the finite population size 𝑁𝑁 is large, the second term on the right is negligible. 
Therefore, if 𝑣𝑣𝑓𝑓𝑐𝑐� 𝐷𝐷�𝜃𝜃�𝐵𝐵� is a design unbiased estimator of 𝑉𝑉𝑓𝑓𝑐𝑐𝐷𝐷�𝜃𝜃�𝐵𝐵�, then it can also serve as an 
approximate estimator of the total variance when 𝑁𝑁 is large: 
 

𝑣𝑣𝑓𝑓𝑐𝑐� 𝜉𝜉𝐷𝐷�𝜃𝜃�𝐵𝐵� ≈ 𝑣𝑣𝑓𝑓𝑐𝑐� 𝐷𝐷�𝜃𝜃�𝐵𝐵� 
 
In addition, if the PSU sample is selected with-replacement or approximately so (when the 
sampling rate is low as in the CISS), the with-replacement design variance estimator also 
captures the variance with respect to the model (Binder & Roberts, 2009).  
 
In summary, for the CISS data analysis, design unbiased or nearly design unbiased point 
estimator can be used to estimate the finite population parameters and the model parameters 
when the model is correctly specified. The with-replacement design variance estimator captures 
both design variance and the model variance.  
 
From now on we only consider design unbiased or approximately design unbiased point 
estimators and their design variance estimators.  

4.4 Design-Unbiased Point Estimator 
 
Probability sampling defines a probability space so that the inclusion probability 𝜋𝜋𝑘𝑘 for each 
sampled unit 𝑘𝑘 can be derived and its inverse 𝑒𝑒𝑘𝑘 = 1 𝜋𝜋𝑘𝑘⁄  can be used to weight the data to 
obtain (approximately) design unbiased estimators. The design-unbiased point estimator is robust 
because it is unbiased for the finite population parameter whether the super-population model 
that generated the finite population is true or not.  
 
Unweighted estimators, on the other hand, may incur severe bias. In Table 1 for example, the 
unweighted crash distribution by PAR domain estimated from the 2017 CISS sample, which is 
simply the 2017 CISS sample allocation to the PAR domains predetermined by NHTSA, is 
severely biased compared with the weighted distribution (Table 2).  
 

4.5 Design Variance Estimation 
 
The impact of the sample design must be recognized when one estimates 𝑉𝑉𝑓𝑓𝑐𝑐𝐷𝐷�𝜃𝜃�𝐵𝐵�. Ignoring the 
sample design may cause severe bias in the standard error estimates. 
 
Estimation methods and computer software have been developed to estimate 𝑉𝑉𝑓𝑓𝑐𝑐𝐷𝐷�𝜃𝜃�𝐵𝐵�. 
Specialized procedures for complex survey data analysis, such as SAS SURVEY procedures and 
SUDAAN procedures, should be used for CISS data analysis along with proper design 
statements. Because of the small CISS PSU sampling fractions, the with-replacement design 
option can be used for CISS data analysis.  
 
Different variance estimation methods (for example, the Jackknife variance estimation method 
and the Taylor series method) can be used to estimate the standard errors of CISS estimates. See 
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Wolter (2007) for more information about design variance estimation under a complex sample 
design.  
 

4.6 Alternative Estimation Methods 
 
Alternative approaches to inference from survey data are not in the scope of this document but 
can be found in the literature. For more information about complex survey data analysis and 
other alternative inference approaches, see Chambers and Skinner (2003), Pfeffermann and Rao 
(2009), Graubard and Korn (1996).  
 

4.7 Missing Data and Imputation 
 
As other surveys, CISS suffers from unit missing and item missing. In the CISS, unit missing 
refers to sampled crashes that were not investigated because the key vehicle was not available for 
inspection and thereby was replaced. These cases have little useful information therefore are 
excluded from the final analysis file. On the other hand, item missing in the CISS refers to 
individual missing values of study variables of the investigated cases.  
 
The CISS base weights are created to be used with the full original sample, instead of only the 
investigated cases. Therefore when there are missing PJs or PARs, using only the investigated 
sample without any treatment to the base weights may result in biased estimates. In the CISS, 
unit missing are treated by nonresponse adjustment to the base weights (see Chapter 3).  
 
Various methods have been proposed in the literature for item missing treatment – many 
involving imputation. See Brick and Kalton (1996) for reviews of imputation and weight 
adjustment methods commonly used. In the CISS data file, item missings are not imputed. Data 
users should use the method that fits their study to handle the item missings. Two examples are 
presented in the next chapter.  
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5. Examples 
 
In this Chapter, we illustrate how to specify design statements in SAS and SUDAAN software 
under different scenarios and how to handle item missings using SAS PROC SURVEYIMPUTE 
through the following examples:  

• Example 1: Calculating single-year CISS estimates.  
• Example 2: Calculating domain estimates with Hot Deck imputation. 
• Example 3: Combining multiple years of data.  
• Example 4: Fully efficient fractional imputation.  

 

5.1 Example 1: Single-Year CISS Estimates 
 
The following SAS and SAS-callable SUDAAN programs show how design options are 
specified to make single-year CISS estimates. We choose Jackknife variance estimation method 
as the variance estimation method in SAS and SAS-callable SUDAAN programs. This also 
implicitly assumes the PSUs were selected with replacement or with a low sampling rate (as in 
CISS).  
 
CISS analysis data files include a file (JKWGT) of adjusted Jackknife replicate weights. JK 
replicate weights were created by deleting one PSU at a time and then recalculate the PSU 
weights and implement the same weighting process used to create the final case weights. These 
JK replicate weights capture the effect of weight adjustment and use the finest PSU stratification 
(12 PSU strata for 2017, 13 PSU strata for 2018, 16 PSU strata for 2019 and afterward) so they 
may produce better variance estimates. It should be noticed these adjusted JK replicate weights 
can only be used for single-year estimation. When multiple years of CISS or CDS data are 
combined for analysis, either Taylor series method or unadjusted JK replicate weights should be 
used. See more details in Example 3.  
 
The final CISS weight variable, CASEWGT, should be used in a weight statement. JKWGT1 – 
JKWGT24 are the 24 adjusted JK replicate weights for 2017 CISS. The JKCOEFS=0.5 in SAS 
statement and ADJJACK=0.5 in SUDAAN statement are associated with 2017 CISS JK replicate 
weights. For future CISS, these coefficients may be different and will be published in future 
CISS AUM.  
 
The following examples are the SAS and SUDAAN programs and outputs for single-year 
estimates of domain identification variable CATEGORY defined in Table 1 using the adjusted 
JK replicate weights.  
 
The input data file CISS_CRASH is the 2017 CISS CRASH  file. It is already merged with the 
adjusted JK weight file (JKWGT). When JK replicate weights are provided by the user through 
the REPWEIGHTS statement in SAS or the JACKWGTS statement in SUDAAN, the design 
statements (the STRATA and the CLUSTER statements in SAS and the NEST statement in 
SUDAAN) are not needed.  
 

  



 

12 

/*SAS Example*/ 
proc surveyfreq data=ciss_crash varmethod=jk; 
 format category domainfmt.; 
 tables category; 
 repweights JKWGT1-JKWGT24 / JKCOEFS=0.5; 
 weight CASEWGT; 
 run; 
 
Table 2: Single-year CISS estimates - SAS Output 
 

CASE CATEGORY 

CATEGORY Frequency Weighted 
Frequency 

Std Dev of 
Wgt Freq 

Percent Std Err of 
Percent 

Fatal PV Crash 81 15,798 1,361 0.5692 0.0506 

Recent-Model PV & Severe 210 24,940 2,130 0.8985 0.0656 

Recent-Model PV & Injured 481 312,681 16,639 11.2653 0.5214 

Recent-Model PV & No Injury 286 540,462 27,766 19.4718 0.8064 

Mid-Model PV & Severe 122 20,745 2,548 0.7474 0.0833 

Mid-Model PV & Injured 233 226,985 13,614 8.1778 0.4692 

Mid-Model PV & No Injury 219 439,050 21,894 15.8181 0.5946 

Old-Model PV & Severe 95 49,779 8,421 1.7934 0.2885 

Old-Model PV & Injured 194 453,913 65,750 16.3537 2.4256 

Old-Model PV & No Injury 114 691,255 85,055 24.9046 2.5432 

Total 2,035 2,775,608 108,648 100.000   
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/*SAS-Callable SUDAAN Example*/ 
PROC CROSSTAB DATA=ciss_crash DESIGN=JACKKNIFE NOTSORTED; 
 WEIGHT CASEWGT; 
 JACKWGTS JKWGT1-JKWGT24 / adjjack=0.5; 
 TABLES CATEGORY; 
 CLASS CATEGORY; 
 SETENV LABWIDTH=30 COLWIDTH=15; 
 PRINT  NSUM="SAMSIZE" WSUM="POPSIZE" SEWGT="POP SE"  
   COLPER="PERCENT" SECOL="PERCENT SE" 
   / STYLE=NCHS NSUMFMT=F7.0 WSUMFMT=F8.0  
    SEWGTFMT=F8.0; 
 RFORMAT CATEGORY DOMAINFMT.; 
 RUN; 
 
Table 3: Single-year CISS estimates – SAS-Callable SUDAAN Output 
 
Variance Estimation Method: Replicate Weight Jackknife 
by: CASE CATEGORY. 
 
--------------------------------------------------------------------------------------------------   
CASE CATEGORY                    SAMSIZE    POPSIZE     POP SE           PERCENT        PERCENT SE   
--------------------------------------------------------------------------------------------------   
Total                               2035    2775608     108648            100.00              0.00   
Fatal PV Crash                        81      15798       1361              0.57              0.05   
Recent-Model PV & Severe             210      24940       2130              0.90              0.07   
Recent-Model PV & Injured            481     312681      16639             11.27              0.52   
Recent-Model PV & No Injury          286     540462      27766             19.47              0.81   
Mid-Model PV & Severe                122      20745       2548              0.75              0.08   
Mid-Model PV & Injured               233     226985      13614              8.18              0.47   
Mid-Model PV & No Injury             219     439050      21894             15.82              0.59   
Old-Model PV & Severe                 95      49779       8421              1.79              0.29   
Old-Model PV & Injured               194     453913      65750             16.35              2.43   
Old-Model PV & No Injury             114     691255      85055             24.90              2.54   
--------------------------------------------------------------------------------------------------   

 
  



 

14 

5.2 Example 2: Calculating Domain Estimates With Hot Deck Imputation 
 
Domain estimate refers to the statistics for a subpopulation. It is important to use the full sample 
for domain estimation. It may produce biased variance estimate by subsetting the full sample for 
domain estimation.  
 
In SAS SURVEY procedures, domains are specified by the variables listed in the TABLES 
and/or the DOMAIN statement. The SAS BY statement subsets the full sample for one domain at 
a time, therefore it should not be used to produce domain estimates. In SAS-callable SUDAAN 
procedures, domains are specified by the variables listed in the TABLES and/or the SUBPOPN 
statement.  
 
The following SAS program estimates the total number and the average number of vehicles 
involved in 2017 CISS crashes during nighttime (7 p.m. – 6:59 a.m.). We keep all records in the 
file although we are only interested in nighttime estimates.  
 
Variable NIGHT identifies nighttime (7 p.m. – 6:59 a.m.) and day time (7 a.m. – 6:59 p.m.). 
Three crashes have missing crash time which caused 3 missing values in variable NIGHT. So we 
first run SAS PROC SURVEYIMPUTE3 to impute variable NIGHT. To preserve the observed 
multivariate relationship between variable NIGHT and the number of vehicles involved, these 
two variables are imputed jointly using METHOD=HOTDECK along with option 
SELECTION=WEIGHTED to avoid imputation bias. The domains are defined by variable 
NIGHT in the DOMAIN statement.  
 
PROC SURVEYIMPUTE DATA=CISS_CRASH_A METHOD=HOTDECK  

(SELECTION=WEIGHTED) SEED=13579; 
 VAR   NIGHT VEHICLES; 
 OUTPUT  OUT=CISS_CRASH_B; 
 WEIGHT CASEWGT; 
 RUN; 

 
PROC SURVEYMEANS DATA=CISS_CRASH_B VARMETHOD=JK MEAN SUM CLM; 
 FORMAT  NIGHT NIGHTFMT.; 
 VAR   VEHICLES; 
 DOMAIN  NIGHT; 
 REPWEIGHTS JKWGT: / JKCOEFS=0.5; 
 WEIGHT  CASEWGT; 
 RUN; 

  

 
3 For more details see: https://support.sas.com/documentation/onlinedoc/stat/141/surveyimpute.pdf  

https://support.sas.com/documentation/onlinedoc/stat/141/surveyimpute.pdf
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Table 4: SAS PROC SURVEYMEANS domain estimates 

Statistics for Night Domains 

Night Mean 
Std Error 
of Mean 95% CL for Mean Sum 

Std Error 
of Sum 

Night 1.501198 0.043321 1.411789 1.590608 1343701 92199 
Day 1.881356 0.028691 1.82214 1.940572 3537932 167199 

 

5.3 Example 3: Combining Multiple Years of Data  
 
Combining multiple years of data increases sample size for better estimates. In this section, we 
explain the issue and show how to use multiple years of CISS/CDS data. In the following, we 
first explain how to combine multiple years of CISS data and then explain how to combine 
multiple years of CDS data with multiple years of CISS data.  
 
Because it takes several months to train a CISS data collection technician, CISS data collection 
sites (PSUs) were phased in over two years: 24 PSUs in 12 strata collecting data from January 
2017, 28 PSUs in 13 strata collecting data from January 2018, and 32 PSUs in 16 strata 
collecting data from July 2018. Here the 24 PSU sample is a sub-sample of the 28 PSU sample 
and the 28 PSU sample is a sub-sample of the 32 PSU sample. Therefore, these annual PSU 
samples are not independent samples. In addition, the strata of the 24 PSU sample were 
collapsed from the strata of the 28 PSU sample and the strata of the 28 PSU sample were 
collapsed from the strata of the 32 PSU sample.  
 
The adjusted JK replicate weights were created for single-year estimates, not for combined 
multiple year data analysis. For multiple year data analysis, Taylor series method or the 
unadjusted JK replicate weights should be used. The unadjusted JK replicate weights refer to the 
JK replicate weights that are not adjusted by the weighting procedures – directly generated by 
SAS procedures for example. Taylor series method and the Jackknife method using the 
unadjusted JK replicate weights do not capture the weighting adjustment effects so they may 
produce larger variance estimates.  
 
When multiple years of CISS data are combined, the coarsest PSU strata are used for variance 
estimation. The 2017 CISS has the coarsest PSU strata (12 strata) compared with 13 and 16 
strata in 2018 and later years. Therefore, the 12 PSU strata of 2017 CISS are used for variance 
estimation whenever multiple years of data are combined. In each year’s CISS data files, a 
variable PSUSTRAT identifies the 12 PSU strata for variance estimation purpose and variable 
PSU identifies the PSU. In the following SAS program, we first combine 2017 - 2018 CISS data 
into a file “COMBINED_CISS” in a SAS data step. The first SAS PROC SURVEYFREQ uses 
Taylor series method to estimate the variances. The second SAS PROC SURVEYFREQ 
generates the unadjusted JK replicate weights and uses these unadjusted JK replicate weights to 
estimate the variance.  
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DATA COMBINED_CISS; 
 SET CISS_2017 CISS_2018; 
 RUN; 
 
/*Taylor series method*/ 
PROC SURVEYFREQ DATA=COMBINED_CISS VARMETHOD=TAYLOR; 
 STRATA PSUSTRAT; 
 CLUSTER PSU; 
 FORMAT CATEGORY DOMAINFMT.; 
 TABLES CATEGORY; 
 WEIGHT CASEWGT; 
 RUN; 
 
/*Using unadjusted JK replicate weights generated by SAS*/ 
PROC SURVEYFREQ DATA=COMBINED_CISS VARMETHOD=JK; 
 STRATA PSUSTRAT; 
 CLUSTER PSU; 
 FORMAT CATEGORY DOMAINFMT.; 
 TABLES CATEGORY; 
 WEIGHT CASEWGT; 
 RUN; 
 

CISS target population (crashes with at least one passenger vehicle towed) is larger than CDS 
target population (crashes with at least one passenger vehicle towed due to damage or unknown 
reason). When comparable sub-populations can be identified in both CISS and CDS, multiple 
years of data from both surveys can also be combined. In 2019, NHTSA added a vehicle level 
variable TOWED. In 2019 CISS data file, variable TOWED=2 if the vehicle was towed due to 
disabling damage or towed due to unknown reason. Therefore, the following SAS statement can 
be used to identify passenger vehicle towed due to damage or unknown reason from 2019 CISS 
file: 
 

IF TOWED IN (2) AND 1<=BODYTYPE<=49 THEN PV_TOW_DAMAGE=1; 
 
Here variable BODYTYPE is the vehicle body type.  
 
NHTSA plans to add a new category 7 - “Towed, Unknown Reason” to variable TOWED from 
2020. Therefore, the following SAS statement can be used to identify passenger vehicle towed 
due to damage or unknown reason from 2020 CISS file: 
 

IF TOWED IN (2,7) AND 1<=BODYTYPE<=49 THEN PV_TOW_DAMAGE=1; 
 
Variable PV_TOW_DAMAGE is used to create a crash level flag to identify CDS in-scope 
crashes in CISS: e.g. CDS_IN_SCOPE=1 if there is at least one vehicle in the crash has 
PV_TOW_DAMAGE=1 and CDS_IN_SCOPE=2 otherwise. Variable CDS_IN_SCOPE is set to 
1 for all crashes in CDS. Then the full CISS sample (CDS in-scope or not) can be combined with 
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the CDS full sample and variable CDS_IN_SCOPE variable is used as a domain identifier for 
combined data analysis.  
 
CISS sample selection is independent from CDS sample selection. When CISS data is combined 
with CDS data, a new stratification variable STUDY (STUDY=1 for CDS and STUDY=2 for 
CISS) is created first in a SAS data step to capture this independence. In the following example, 2 
years of CDS data are combined with 2 years of CISS data: 
 
DATA CDS_CISS; 

SET  CDS2014.ACCIDENT (IN=CDS2014)  
  CDS2015.ACCIDENT (IN=CDS2015) 
  CISS2019.CRASH  (IN=CISS2019) 

CISS2020.CRASH  (IN=CISS2020); 
 STUDY = CDS2014*1 + CDS2015*1 + CISS2019*2 + CISS2020*2; 

… … … …  
 RUN; 
 

Since multiple years of data are combined, we use Taylor series method or the unadjusted JK 
replicate weights to estimate the variances. Variable STUDY is used as an extra stratification 
variable. The PSU identification variable, PSU, now is the third variable listed in the SUDAAN 
NEST statement (PSULEV=3). If we let the software generate the JK replicate weights, the 
design statements (the STRATA and the CLUSTER statements in SAS and the NEST statement 
in SUDAAN) must be included. Variable CDS_IN_SCOPE is used as a common domain 
identifier.  
 
/*SUDAAN Example*/ 
PROC CROSSTAB DATA=CDS_CISS FILETYPE=SAS DESIGN=JACKKNIFE  
   NOTSORTED; 
 NEST  STUDY PSUSTRAT PSU / PSULEV=3; 
 SUBPOPN CDS_IN_SCOPE=1 / NAME=”CDS IN-SCOPE ONLY”; 
 WEIGHT CASEWGT; 
 … … …  
 RUN; 
 
/*SAS Example*/ 
proc surveyfreq DATA=CDS_CISS VARMETHOD=TAYLOR; 
 STRATA  STUDY PSUSTRAT; 
 CLUSTER PSU; 
 WEIGHT CASEWGT; 
 DOMAIN CDS_IN_SCOPE; 
 … … …  
 run; 
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5.4 Example 4: Fully Efficient Fractional Imputation 
 

When item missing rate is high, Hot Deck imputation may incur non-negligible imputation 
variance. The fully efficient fractional imputation method (FEFI) preserves the observed 
multivariate relationship and does not add additional variability due to imputing value selection 
(Kim and Fuller, 2004). FEFI method distributes the weights of the units with missing items to 
multiple units with observed items by adjusting the final weights and the replicate weights to 
compensate the missing items. So it must be used with replicate variance estimation methods.  
 
In the following example, we illustrate how to impute multiple variables jointly using SAS 
PROC SURVEYIMPUTE and use the output file for analysis.  
 

First, in the following SAS data step, three variables with missing values are coded: 

• INJURED (indicator for injury or fatal crash): 1 = yes, 0 = no, 9 is set to SAS missing. 

• NIGHT (indicator for night crash): 1 = night, 0 = day, 99 is set to SAS missing.  

• ALCINV (indicator for alcohol involved crash): 1 = yes, 0 = no, 9 is set to SAS missing. 

 
DATA CISS_CRASH_C; 
 SET CISS_CRASH; 
 IF SUBSTR(CRASHTIME,1,2) IN ('19','20','21','22','23','00', 

'01','02','03','04','05','06') THEN NIGHT=1; 
 ELSE IF SUBSTR(CRASHTIME,1,2)='99' THEN NIGHT=.; 
 ELSE NIGHT=0; 
 IF CAIS=9  THEN INJURED=.; ELSE INJURED=(1<=CAIS<=7); 
 IF ALCINV=9 THEN ALCINV =.; ELSE ALCINV=(ALCINV=1); 
 RUN; 

 

Then SAS PROC SURVEYIMPUTE is used to impute the missing values of the three variable 
simultaneously to preserve the observed multivariate relationship using FEFI method. As the 
result, 383 records have at least one of the three variables missing and all missing items are 
imputed.  
 
PROC FORMAT; 
 VALUE YESNOUNK17F 
 1 = 'Yes' 
 2 = 'No'; 
 RUN; 

PROC SURVEYIMPUTE DATA=CISS_CRASH_C METHOD=FEFI; 
 FORMAT INJURED NIGHT ALCINV YESNOUNK17F.; 
 REPWEIGHTS JKWGT: ; 
 WEIGHT   CASEWGT; 
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 VAR     INJURED ALCINV NIGHT; 
 CLASS    INJURED ALCINV NIGHT; 
 ID     CASEID; 
 OUTPUT   OUT=INJURED_FEFI; 
 RUN; 

 

Table 5: FEFI imputation output 
 

Imputation Summary 

Observation Status 
Number of 

Observations 
Sum of 
Weights 

Nonmissing 1,652 2237242.4 
Missing 383 538365.588 
Missing, Imputed 383 538365.588 
Missing, Not Imputed 0 0 
Missing, Partially Imputed 0 0 

 
FEFI method modifies the final weights and the user provided replicate weights. The new 
imputation-adjusted weights are output to data file INJURED_FEFI. The new final weight is 
named as IMPWT. The new replicate weights are named as IMPREPWT_#. These imputation-
adjusted weights must be used in the analysis. The following is a SAS example: 
 
PROC SURVEYLOGISTIC DATA=INJURED_FEFI VARMETHOD=JK; 
 CLASS    ALCINV NIGHT; 
 MODEL    INJURED = ALCINV NIGHT; 
 WEIGHT   IMPWT; 
 REPWEIGHTS IMPREPWT_: / JKCOEFS=0.5; 
 RUN; 
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6. Frequently Asked Questions 
 

1. What is CISS? 
A. The Crash Investigation Sampling System is NHTSA’s new national probability-based 

crash sampling system designed to replace the Crashworthiness Data System.  
 

2. What data does CISS collect and what does it represent? 
A. CISS selects crash sample by selecting police crash reports and collects information 

about the crash, event, passenger and vehicle. The CISS data, when used with the 
accompanying weights, are nationally representative of all police-reported motor vehicle 
traffic crashes on a traffic way where at least one passenger vehicle is towed. 
 

3. When did NHTSA transition from CDS to CISS? 
A. 2015 was the last year of data collection through CDS. CISS was designed and 

implemented over a multi-year effort and started collecting data for publication in 
January 2017. 
 

4. Why did NHTSA transition from CDS to CISS? 
A. The CDS had used the same data collection sites since 1988. Over the years, the 

population has shifted, the vehicle fleet and the analytic needs of the safety community 
have changed. The existing CDS police jurisdiction samples and weights became 
outdated as the PJ population changed. Congress directed and provided funds to NHTSA 
to modernize its data collection system.  
 

5. How is CISS different from CDS in terms of its sample design?  
A. The following are some major differences in sample designs of CISS and CDS: 

• Independent samples: The CISS sample design is independent from any other 
NHTSA’s surveys, including NHTSA’s new Crash Report Sampling System that 
replaces the NASS General Estimates System. In comparison, the GES and the CDS 
samples were nested, i.e., the CDS used a subset of the GES data collection sites. The 
independent design allows NHTSA to optimize each system - CISS and CRSS. 

• Different formation of PSUs: In both CISS and CDS, a PSU is either a county or a 
group of counties. In CISS, the nation was partitioned into 1,784 PSUs, while in CDS 
1,195 PSUs were formed. CISS’s average PSU size is smaller than CDS. This 
resulted in more operationally efficient PSUs in CISS. In addition, a new composite 
PSU measure of size variable using the various estimated crash counts by the new 
PAR domains was used in CISS.  

• Scalable PSU sample: The CISS PSU sample size can be increased without changes 
to the existing PSU sample while the corresponding selection probabilities are still 
trackable. This enables NHTSA to accommodate potential budget fluctuations with 
minimum operational costs and efforts.  

• Scalable PJ sample: The Pareto sampling method was used to select the CISS PJ 
sample. The second stage sampling frame, the police jurisdictions in the selected 
PSUs, changes over time. Consequently, the PJ sample needs to be reselected 
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occasionally to maintain adequate sample size or to cover the updated PJ frame. 
Pareto sampling reduces the changes to the existing PJ sample when a new PJ sample 
is reselected.  

• Alignment with data needs: PAR domains were revised based on data needs to 
oversample crashes involving killed or injured occupant. At the PAR sample selection 
stage, PAR domains are used to oversample high interest crashes.  

• Optimized sample allocation: CISS PSU, PJ, and PAR sample sizes were determined 
by minimizing the variance of a simplified variance estimator subject to fixed cost.  

• Replacement cases: In the CISS, if the vehicle that defines the PAR domain is not 
available for investigation, replacement case is selected and investigated. This new 
feature results in about 16 percent more useful cases in 2017.  

• Weight adjustments: In the CISS, non-responding PJs and PARs are monitored and 
weight adjustments are applied to mitigate potential bias. In addition, large weights 
are truncated by the 10 PAR domains.  

• Jackknife replicate weights for variance estimation: Adjusted Jackknife replicate 
weights are provided in one of the CISS analysis files for variance estimation. These 
adjusted Jackknife replicate weights capture the impact of the weight adjustments to 
the total variance.  
 

6. How is CISS similar to CDS in sample design?  
A. The following are some major common features between the sample designs of CISS and 

CDS: 
• Both CISS and CDS have a three-stage sample design: PSU, PJ, and PAR sample 

selection.  
• In both surveys, PSUs, PJs and PARs have selection probabilities proportional to their 

measure of sizes.  
• In both surveys, PAR samples are selected weekly by PSU.  
• Both surveys collect accident, even, vehicle, and occupant level information.  

 
7. How do the CISS analysis files (data sets) differ from the CDS? 

A. CISS analytic datasets differ significantly from the CDS datasets. In CDS, variables were 
stored in 11 files by the entities (crash, vehicle, person, etc.) from which the variables 
were collected, while in CISS variables were stored in 37 files by the data modules/tables 
(airbag, injury, fire, etc.) from which the variables were collected. In addition, the 
adjusted Jackknife replicate weights were also provided in a separate file. Through the 
modernized infrastructure, CISS has collected and is presenting much more information 
from its crash investigations (including EDR information, child safety information and 
scene diagram coordinates). Variable names have also changed between CDS and CISS. 
CISS data users should refer extensively to the CISS and CDS AUMs.   
 

8. How should data users compute the variance for CISS estimates?  
A. The CISS sample is the result of complex survey sampling, and therefore is not a simple 

random sample. Software specialized in complex survey data analysis such as SAS 
SURVEY procedures or SUDAAN procedures should be used to make estimates from 
CISS sample. Using these specialized softwares along with the appropriate design and 
weight statements, the sampling variance can be estimated. Failing to take the sample 
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design and weights into account in estimation may incur severe bias to the point and 
variance estimates. NHTSA created Jackknife replicate weights for the CISS variance 
estimation using single-year data. These Jackknife replicate weights incorporate 
weighting adjustments therefore they capture the effects of these weighting adjustment. 
See Chapters 4 and 5 for some basic concept of complex survey data analysis, and SAS 
and SUDAAN examples on how to estimate the variances for CISS estimates.  
 

9. What software or techniques should be used for variance calculation?  
A. Any software that takes complex survey design into account can be used to make 

estimates from CISS sample. Some examples of such softwares: SAS SURVEY 
procedures, SUDAAN, R survey package, and STATA. See Chapter 5 for specific SAS 
and SUDAAN examples of programming techniques for variance estimation. 
 

10. Are producing small area estimates different from CDS to CISS?  
B. The problem associated with a small sample size does not change from CDS to CISS. 

Users can combine multiple years of CISS data together to augment the sample size. See 
Chapter 5 for more details on how to specify design options when multiple years of CISS 
data are combined. Also see Rao and Molina (2015) for more details on small area 
estimation.  
 

11. How are missing data addressed in CISS? 
A. NHTSA made nonresponse adjustments to the weights to treat the unit missings in CISS. 

To handle item missings in CISS, data users need to choose their own methods for their 
study. See section 4.7 and Chapter 5 for more details and some examples.  
 

12. Can CISS data be combined with CDS data? 
B. Multiple years of CISS data and CDS data can be combined if comparable sub-

populations can be identified in both CISS and CDS because CISS target population is 
different from CDS target population. See section 5.3 for more detailed discussion and 
example.  
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